\qquad
\qquad

Practice A

For use with pages 595-602

The diameter of a circle is given. Find the radius.

1. $d=6$ in.
2. $d=24 \mathrm{~cm}$
3. $d=15 \mathrm{ft}$
4. $d=9$ in.

The radius of a circle is given. Find the diameter.
5. $r=11 \mathrm{~cm}$
6. $r=8 \mathrm{ft}$
7. $r=10 \mathrm{in}$.
8. $r=4.6 \mathrm{~cm}$

Match the notation with the term that best describes it.

9. D
A. Center
10. $\overleftrightarrow{F H}$
B. Chord
11. $\overline{C D}$
C. Diameter
12. $\overline{A B}$
D. Radius
13. C
E. Point of tangency
14. $\overline{A D}$
F. Common external tangent
15. $\overleftrightarrow{A B}$
G. Common internal tangent
16. $\overleftrightarrow{D E}$
H. Secant

Use the diagram at the right.

17. What are the center and radius of $\odot A$?
18. What are the center and radius of $\odot B$?
19. Describe the intersection of the two circles.
20. Describe all the common tangents of the two circles.
21. Are the two circles congruent? Explain.

Tell whether $\overleftrightarrow{A B}$ is tangent to $\odot \boldsymbol{C}$. Explain your reasoning.
22.

23.

24. Baseball Stadium The shape of the outfield fence in a baseball stadium is that of a quarter circle. If the distance from home plate to the wall is 330 feet, what is the radius of the entire circle? What is the diameter of the circle?

