GOAL

Reteaching with Practice

For use with pages 44–50

NAME

Date

Identify vertical angles and linear pairs and identify complementary and supplementary angles

VOCABULARY

Two angles are **vertical angles** if their sides form two pairs of opposite rays.

Two adjacent angles are a **linear pair** if their noncommon sides are opposite rays.

Two angles are **complementary angles** if the sum of their measures is 90° . Each angle is the **complement** of the other.

Two angles are **supplementary angles** if the sum of their measures is 180° . Each angle is the **supplement** of the other.

EXAMPLE 1 Identifying Vertical Angles and Linear Pairs

- **a.** Are $\angle 1$ and $\angle 3$ vertical angles?
- **b.** Are $\angle 2$ and $\angle 4$ a linear pair?
- **c.** Are $\angle 1$ and $\angle 4$ a linear pair?

SOLUTION

- **a.** Yes. The sides of the angles form two pairs of opposite rays.
- **b.** No. The angles are not adjacent.
- c. Yes. The angles are adjacent and their noncommon sides are opposite rays.

Exercises for Example 1

Use the figure to answer the questions.

- **a.** Are $\angle 1$ and $\angle 2$ a linear pair?
- **b.** Are $\angle 1$ and $\angle 3$ vertical angles?
- **c.** Are $\angle 1$ and $\angle 4$ a linear pair?
- **d.** Are $\angle 2$ and $\angle 4$ vertical angles?

- **a.** Are $\angle 1$ and $\angle 5$ a linear pair?
- **b.** Are $\angle 1$ and $\angle 2$ a linear pair?
- **c.** Are $\angle 1$ and $\angle 4$ vertical angles?
- **d.** Are $\angle 3$ and $\angle 5$ vertical angles?

Name

Reteaching with Practice

For use with pages 44–50

EXAMPLE 2 Finding Angle Measures

Solve for *x* in the diagram at the right. Then find the angle measures.

SOLUTION

Use the fact that vertical angles are congruent.

$$(7x - 25)^\circ = (5x + 15)^\circ$$

 $x = 20$

Use substitution to find the angle measures.

 $m \angle FHI = (7x - 25)^\circ = (7 \cdot 20 - 25)^\circ = 115^\circ$ $m \angle GHJ = (5x + 15)^\circ = (5 \cdot 20 + 15)^\circ = 115^\circ$

Next, realize that $\angle FHI$ and $\angle FHG$ are a linear pair. So, the measures of these two angles must sum to 180°. So, $m \angle FHG = 180^\circ - 115^\circ$, so $m \angle FHG = 65^\circ$.

Finally, notice that $\angle FHG$ and $\angle IHJ$ are vertical angles. So, $m \angle IHJ = 65^{\circ}$.

Exercises for Example 2

Solve for x and y, then find the angle measures.

EXAMPLE 3 Finding Measures of Complements and Supplements

- **a.** Given that $\angle E$ is a complement of $\angle F$ and $m \angle E = 68^\circ$, find $m \angle F$.
- **b.** Given that $\angle G$ is a supplement of $\angle H$ and $m \angle G = 152^\circ$, find $m \angle H$.

SOLUTION

a. $m \angle F = 90^{\circ} - m \angle E = 90^{\circ} - 68^{\circ} = 22^{\circ}$

b. $m \angle H = 180^{\circ} - m \angle G = 180^{\circ} - 152^{\circ} = 28^{\circ}$

Exercises for Example 3

Find the measure of the angle.

- **5.** Given that $\angle A$ is a complement of $\angle B$ and $m \angle B = 81^{\circ}$, find $m \angle A$.
- **6.** Given that $\angle C$ is a supplement of $\angle D$ and $m \angle C = 27^{\circ}$, find $m \angle D$.

88

Date