Name \qquad Date \qquad

Reteaching with Practice
 For use with pages 34-42

GOAL Bisect a segment and bisect an angle

Vocabulary

The midpoint of a segment is the point that divides, or bisects, the segment into two congruent segments.

A segment bisector is a segment, ray, line, or plane that intersects a segment at its midpoint.

A construction is a geometric drawing that uses a limited set of tools, usually a compass and a straightedge.
An angle bisector is a ray that divides an angle into two adjacent angles that are congruent.
The Midpoint Formula:
If $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ are points in a coordinate plane, then the midpoint of $\overline{A B}$ has coordinates $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$.

EXAMPLE 1

Finding the Coordinates of the Midpoint of a Segment

Find the coordinates of the midpoint of $\overline{C D}$ with endpoints $C(4,3)$ and $D(-2,0)$.

Solution

Use the Midpoint Formula as follows.

$$
\begin{aligned}
M & =\left(\frac{4+(-2)}{2}, \frac{3+0}{2}\right) \\
& =\left(1, \frac{3}{2}\right)
\end{aligned}
$$

Exercises for Example 1

Find the coordinates of the midpoint of the segment whose endpoints are given.

1. $E(4,-4), F(1,7)$
2. $G(2,9), H(-3,6)$
3. $I(-8,3), J(3,0)$

EXAMPLE 2 Finding the Coordinates of the Endpoint of a Segment

The midpoint of $\overline{K L}$ is $M(6,-2)$. One endpoint is $K(4,3)$. Find the coordinates of the other endpoint.
\qquad

Reteaching with Practice

For use with pages 34-42

SOLUTION

Let (x, y) be the coordinates of L. Use the Midpoint Formula to write equations involving x and y.

$$
\begin{array}{rlrl}
\frac{4+x}{2} & =6 & \frac{3+y}{2} & =-2 \\
4+x & =12 & 3+y & =-4 \\
x & =8 & y & =-7
\end{array}
$$

So, the other endpoint of the segment is $L(8,-7)$.

Exercises for Example 2

Find the coordinates of the other endpoint of a segment with the given endpoint and midpoint \boldsymbol{M}.
4. $N(-1,5), M(0,1)$
5. $P(6,-4), M(3,10)$
6. $R(-7,-3), M(0,0)$

example 3 Finding the Measure of an Angle

In the diagram, $\overrightarrow{B C}$ bisects $\angle A B D$. Solve for x.

Solution

$$
\begin{aligned}
m \angle A B C & =m \angle C B D & & \text { Congruent angles have equal measures. } \\
(4 x+31)^{\circ} & =(x+46)^{\circ} & & \text { Substitute given measures. } \\
4 x & =x+15 & & \text { Subtract } 31^{\circ} \text { from each side. } \\
3 x & =15 & & \text { Subtract } x \text { from each side. } \\
x & =5 & & \text { Divide each side by } 3 .
\end{aligned}
$$

Exercises for Example 3
$\overrightarrow{B D}$ bisects $\angle A B C$. Find the value of x.
7.

8.

