

Challenge: Skills and Applications

For use with pages 34-42

In Exercises 1–4, C is the midpoint of both \overline{AE} and \overline{BD} .

- **1.** If $BC = x^2 18$ and CD = x + 2, find x.
- **2.** If AC = 2x 1 and $AE = x^2 2$, find x.
- **3.** Can you be certain that AB = DE? Explain.
- **4.** If AB = 2x + 3 and $DE = x^2$, what are the possible values of x?
- **5.** Let $\angle PQR$ be an angle, and let M be the midpoint of \overline{PR} . Can you conclude that \overrightarrow{QM} bisects $\angle PQR$? If so, explain why. If not, sketch a counterexample.

- **6.** Suppose \overrightarrow{AC} bisects $\angle BAD$, \overrightarrow{AD} bisects $\angle BAE$, \overrightarrow{AE} bisects $\angle BAF$. What is the maximum possible measure of $\angle BAC$?
- 7. Suppose \overrightarrow{PK} bisects $\angle JPL$ and \overrightarrow{PL} bisects $\angle KPM$. If $m\angle JPM = 150^\circ$, find both possible measures of $\angle JPK$. Sketch both possible situations.
- **8.** Suppose $\angle AXB \cong \angle BXC \cong \angle CXD \cong \angle DXE \cong \angle EXA$, and \overrightarrow{XD} bisects $\angle AXB$. What is $m \angle AXB$? Sketch this situation.

In Exercises 9–14, use the following information to find the midpoint M of \overline{PQ} .

If $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$ are two points in a three-dimensional coordinate system, then the midpoint of \overline{AB} has coordinates $\left(\frac{x_2 + x_1}{2}, \frac{y_2 + y_1}{2}, \frac{z_2 + z_1}{2}\right)$.

- **9.** P(5, 7, -5)
 - Q(3, 7, 11)
- **12.** P(2, 0, 7)
 - Q(8, -5, 12)
- **10.** *P*(2, 0, 8)
 - Q(2, 6, -2)
- **13.** *P*(3.4, 1.8, 3.9)
 - Q(6.2, -4.6, 0.3)
- **11.** P(-3, 2, 7)
 - Q(-11, 6, 3)
- **14.** *P*(12, 35, 8.7)
 - Q(1.6, -2.4, 1.9)