\qquad

Challenge: Skills and Applications

For use with pages 34-42

In Exercises 1-4, C is the midpoint of both $\overline{A E}$ and $\overline{B D}$.

1. If $B C=x^{2}-18$ and $C D=x+2$, find x.
2. If $A C=2 x-1$ and $A E=x^{2}-2$, find x.
3. Can you be certain that $A B=D E$? Explain.
4. If $A B=2 x+3$ and $D E=x^{2}$, what are the possible values of x ?
5. Let $\angle P Q R$ be an angle, and let M be the midpoint of $\overline{P R}$.

Can you conclude that $\overrightarrow{Q M}$ bisects $\angle P Q R$? If so, explain why. If not, sketch a counterexample.

6. Suppose $\overrightarrow{A C}$ bisects $\angle B A D, \overrightarrow{A D}$ bisects $\angle B A E, \overrightarrow{A E}$ bisects $\angle B A F$. What is the maximum possible measure of $\angle B A C$?
7. Suppose $\overrightarrow{P K}$ bisects $\angle J P L$ and $\overrightarrow{P L}$ bisects $\angle K P M$. If $m \angle J P M=150^{\circ}$, find both possible measures of $\angle J P K$. Sketch both possible situations.
8. Suppose $\angle A X B \cong \angle B X C \cong \angle C X D \cong \angle D X E \cong \angle E X A$, and $\overrightarrow{X D}$ bisects $\angle A X B$. What is $m \angle A X B$? Sketch this situation.

In Exercises 9-14, use the following information to find the midpoint M of $\overline{P Q}$.

If $A\left(x_{1}, y_{1}, z_{1}\right)$ and $B\left(x_{2}, y_{2}, z_{2}\right)$ are two points in a three-dimensional coordinate system, then the midpoint of $\overline{A B}$ has coordinates $\left(\frac{x_{2}+x_{1}}{2}, \frac{y_{2}+y_{1}}{2}, \frac{z_{2}+z_{1}}{2}\right)$.
9. $P(5,7,-5)$
$Q(3,7,11)$
12. $P(2,0,7)$
$Q(8,-5,12)$
10. $P(2,0,8)$
$Q(2,6,-2)$
11. $P(-3,2,7)$
$Q(-11,6,3)$
13. $P(3.4,1.8,3.9)$
$Q(6.2,-4.6,0.3)$
14. $P(12,35,8.7)$
$Q(1.6,-2.4,1.9)$

