Practice C

For use with pages 26-32

Use a protractor to measure each angle to the nearest degree.
Write two names for each angle.
1.

2.

3.

Use the Angle Addition Postulate to find the measure of the unknown angle.
4. $m \angle F D C=$

\qquad
5. $m \angle C D E=$ \qquad
6. $m \angle X Y Z=?$

In a coordinate plane, plot the points and sketch $\angle A B C$. Classify the angle. Write the coordinates of a point that lies in the interior of the angle and the coordinates of a point that lies in the exterior of the angle.
7. $A(-5,-4)$
$B(-3,0)$
$C(1,-4)$
8. $A(-5,0)$
$B(-1,-4)$
$C(4,2)$
9. $A(0,1)$
$B(-2,-4)$
$C(-7,-2)$

In Exercises 10-13, use the following information.
Q is in the interior of $\angle R O S . S$ is in the interior of $\angle Q O P . P$ is in the interior of $\angle S O T . m \angle R O T=127^{\circ}, m \angle S O T=71^{\circ}$, and $m \angle R O Q=m \angle Q O S=m \angle P O T$.
Make a sketch and answer the following.
10. Find $m \angle Q O P$
11. Find $m \angle Q O T$
12. Find $m \angle R O Q$
13. Find $m \angle S O P$

Let Q be in the interior of $\angle P O R$. Use the Angle Addition Postulate to solve for \boldsymbol{x}. Find the measure of each angle.
14. $m \angle P O Q=(x+4)^{\circ}$
$m \angle Q O R=(2 x-2)^{\circ}$
$m \angle P O R=26^{\circ}$
15. $m \angle P O Q=(3 x+7)^{\circ}$
$m \angle Q O R=(5 x-2)^{\circ}$
$m \angle P O R=61^{\circ}$
16. $m \angle P O Q=\left(\frac{1}{3} x+\frac{1}{3}\right)^{\circ}$
$m \angle Q O R=\left(2 x+\frac{4}{3}\right)^{\circ}$
$m \angle P O R=(5 x-1)^{\circ}$

