\qquad
\qquad

Reteaching with Practice
 For use with pages 17-25

GOAL Use segment postulates and use the distance formula to measure distances

Vocabulary

A postulate or axiom is a rule that is accepted without proof.

Postulate 1 Ruler Postulate:

The points on a line can be matched one to one with the real numbers. The real number that corresponds to a point is the coordinate of the point.

The distance between points A and B, written as $A B$, is the absolute value of the difference between the coordinates of A and B.
$A B$ is also called the length of $\overline{A B}$.
When three points lie on a line, you can say that one of them is between the other two.

Postulate 2 Segment Addition Postulate:

If B is between A and C, then $A B+B C=A C$. If $A B+B C=A C$, then
B is between A and C.
The Distance Formula is a formula for computing the difference between two points in a coordinate plane.

The Distance Formula:

If $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ are points in a coordinate plane, then the distance between A and B is $A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$.
Segments that have the same length are called congruent segments.

example 1 Using the Segment Addition Postulate

In the diagram of the collinear points, $D E=2$, $E F=3$, and $D E=F G$. Find each length.
FG
DF
$D G$
EG

Solution

Since $D E=F G$ and $D E=2, F G=2$.
Since $D F=D E+E F, D F=2+3=5$.
Since $D G=D F+F G, D G=5+2=7$.
Since $E G=E F+F G, E G=3+2=5$.
\qquad

Reteaching with Practice

For use with pages 17-25
Exercises for Example 1

1. In the diagram of the collinear points, $B C=5$ and $B C=A B$. Find the following lengths.
a. $A C$
b. $A B$
c. Are any segments congruent?

2. In the diagram of the collinear points, $H K=9$, $H I=J K$, and $I J=1$. Find the following lengths.
a. $H I$
b. $J K$
c. $H J$
d. $I K$

EXAMPLE 2 Using the Distance Formula

Find the following distances. State whether any of the segments are congruent.
a. $A B$
b. $B C$
c. $C D$
d. $A C$

Solution

Use the Distance Formula.
a. $A B=\sqrt{[(-1)-(-4)]^{2}+(1-0)^{2}}=\sqrt{3^{2}+1^{2}}=\sqrt{9+1}=\sqrt{10}$
b. $B C=\sqrt{[2-(-1)]^{2}+(2-1)^{2}}=\sqrt{3^{2}+1^{2}}=\sqrt{9+1}=\sqrt{10}$
c. $C D=\sqrt{(2-2)^{2}+(0-2)^{2}}=\sqrt{0^{2}+(-2)^{2}}=\sqrt{0+4}=\sqrt{4}=2$
d. $A C=\sqrt{[2-(-4)]^{2}+(2-0)^{2}}=\sqrt{6^{2}+2^{2}}=\sqrt{36+4}=\sqrt{40}=2 \sqrt{10}$
$\overline{A B}$ and $\overline{B C}$ are congruent because they have the same length.

Exercises for Example 2

Find the distance between the points whose coordinates are given.
3. $(6,4),(-8,11)$
4. $(-5,8),(-10,14)$
5. $(-4,-20),(-10,15)$
6. $(40,32),(36,20)$
7. $(5,-8),(0,0)$
8. $(a, b),(-a,-b)$

