Name

LESSON

Reteaching with Practice

For use with pages 3–9

Vocabulary

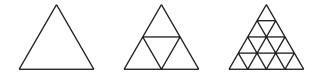
A conjecture is an unproven statement that is based on observations.

Inductive reasoning is a process that involves looking for patterns and making conjectures.

A **counterexample** is an example that shows a conjecture is false.

EXAMPLE 1 Describing a Visual Pattern

Sketch the next figure in the pattern.


SOLUTION

Each figure looks like the one before it except that it has rotated 90° . The next figure will have the smaller circle in the lower-left quarter of the bigger circle.

Exercise for Example 1

1. Sketch the next figure in the pattern.

EXAMPLE 2 Describing a Number Pattern

Describe a pattern in the sequence of numbers. Predict the next number.

a. 5, 3, 1, -1, ... **b.** 1, -4, 9, -16, ... **c.** $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots$

SOLUTION

- **a.** These are consecutive odd numbers, but listed backwards starting with 5. The next number is -3.
- **b.** These numbers look like consecutive perfect squares, except that every other one is negative. The next number is 25.
- **c.** Each number is $\frac{1}{2}$ times the previous number. The next number is $\frac{1}{16}$.

Lesson 1.1

Reteaching with Practice

For use with pages 3–9

Exercises for Example 2

Describe a pattern in the sequence of numbers. Predict the next number.

2. 1, 2, 6, 24, . . . **3.** 0, 3, 8, 15, 24, . . .

EXAMPLE 3 Making a Conjecture

Complete the conjecture.

Conjecture: The product of two consecutive even integers is divisible by ____?___.

SOLUTION

List some specific examples and look for a pattern.

Examples:

$2 \times 4 = 8 = 8 \times 1$	$6 \times 8 = 48 = 8 \times 6$	$10 \times 12 = 120 = 8 \times 15$
$4 \times 6 = 24 = 8 \times 3$	$8\times 10 = 80 = 8\times 10$	$12 \times 14 = 168 = 8 \times 21$

Conjecture: The product of two consecutive even integers is divisible by 8.

Exercise for Example 3

Complete the conjecture based on the pattern you observe in the specific cases.

4. Conjecture: For any two numbers a and b, the product of (a + b) and (a - b) is always equal to _____?.
(2 + 1) × (2 - 1) = 3 = 2² - 1² (4 + 2) × (4 - 2) = 12 = 4² - 2² (3 + 2) × (3 - 2) = 5 = 3² - 2² (6 + 3) × (6 - 3) = 27 = 6² - 3²

EXAMPLE 4 Finding a Counterexample

Show the conjecture is false by finding a counterexample.

Conjecture: All odd numbers are prime.

SOLUTION

The conjecture is false. Here is a counterexample: The number 9 is odd and is a composite number, not a prime number.

Exercise for Example 4

Show the conjecture is false by finding a counterexample.

5. The square of the sum of two numbers is equal to the sum of the squares of the two numbers. That is, $(a + b)^2 = a^2 + b^2$.

18