

Folding Bisectors

QUESTION How can you divide a segment or an angle into two equal parts?

You can fold a piece of paper so that one half of a segment or angle lies exactly on the other half.

GROUP ACTIVITY

Work with a partner.

MATERIALS

- rulers paper
- protractor pencils

EXPLORING THE CONCEPT: SEGMENT BISECTOR

1 On a piece of paper, draw \overline{AB} .

2 Fold the paper so that *B* is on top of *A*.

3 Label the point where the fold intersects \overline{AB} as point M.

4 Use a ruler to measure \overline{AM} and \overline{MB} .

EXPLORING THE CONCEPT: ANGLE BISECTOR

5 On a piece of paper, draw $\angle ACB$.

6 Fold the paper so \overrightarrow{CB} is on top of \overrightarrow{CA} .

7 Draw any point on the fold and label the point *D*.

8 Use a protractor to measure $\angle ACD$ and $\angle BCD$.

DRAWING CONCLUSIONS

- **1.** What do you notice about the segments you measured in Step 4?
- **2.** What do you notice about the angles you measured in Step 8?

EXTENSION

CRITICAL THINKING Is it possible to fold congruent angles from a straight angle if you are given the vertex of the angle? Explain.