Chapter Standardized Test

- TEST-TAKING STRATEGY Long-term preparation for the SAT can be done throughout your high school career and can improve your overall abilities. If you keep up with your homework, both your problem-solving abilities and your vocabulary will improve. This type of long-term preparation will definitely affect not only your SAT scores, but your overall future academic performance as well.
- 1. **MULTIPLE CHOICE** Which function is graphed?

- \bigcirc $y = \tan 2x$
- **(B)** $y = -\tan 2x$

- \bigcirc $y = -2 \tan x$
- 2. **MULTIPLE CHOICE** Which function is graphed?

- **(A)** $y = 4 \cos \frac{1}{4}x$ **(B)** $y = 3 + 4 \cos \frac{1}{4}x$
- **©** $y = 3 + 4 \cos 4x$ **D** $y = 4 \cos 4x$
- **(E)** $y = 4 + 3 \cos 4x$
- **3. MULTIPLE CHOICE** What is the simplified form of $\sin^2\left(\frac{\pi}{2} - x\right)\tan^2 x + \cos^2\left(-x\right) + \tan^2 x?$

- \bigcirc 1 + sec² x \bigcirc sin² x + tan² x
- **4. MULTIPLE CHOICE** Which of the following is a solution of the equation $\tan^2 x \cos x = \cos x$?
- **(A)** x = 0 **(B)** $x = \frac{\pi}{6}$ **(C)** $x = \frac{\pi}{2}$
- **D** $x = \frac{5\pi}{6}$ **E** $x = \frac{5\pi}{4}$

5. MULTIPLE CHOICE What is the exact value of

$$\tan \frac{5\pi}{12}?$$

- **(A)** $3 2\sqrt{3}$ **(B)** $2 \sqrt{3}$ **(C)** $\sqrt{3} 1$

- **(D)** $2 + \sqrt{3}$ **(E)** $2\sqrt{3} + 3$
- **6. MULTIPLE CHOICE** Given that $\cos \theta = -\frac{3}{5}$ and $\pi < \theta < \frac{3\pi}{2}$, which of the following is true?

 - **(A)** $<math>\tan \theta = \frac{3}{4}$ **(B)** $\csc \theta = \frac{5}{4}$

 - \bigcirc sec $\theta = \frac{5}{3}$ \bigcirc tan $\theta = -\frac{4}{3}$
 - \bigcirc cot $\theta = \frac{3}{4}$
- 7. MULTIPLE CHOICE What trigonometric function has a graph with maximum $(\pi, 2)$ and minimum $(3\pi, -2)$?

 - **©** $y = 2 \sin \frac{1}{2}x$ **©** $y = 2 \cos \frac{1}{2}x$
 - \bigcirc $y = 2 \sin \frac{\pi}{2} x$
- **8. MULTIPLE CHOICE** Which of the following is a solution of the equation $\frac{\tan x \sin 2x + 2 \sin^2 x}{-1 + 4 \sin x} = 1?$
- **(A)** x = 0 **(B)** $x = \frac{5\pi}{6}$ **(C)** $x = \frac{11\pi}{6}$
- **(D)** $x = \pi$ **(E)** There is no solution.
- **9. MULTIPLE CHOICE** What is the simplified form of

the expression $\frac{2 \sin x \tan \frac{x}{2}}{\cos \left(\frac{\pi}{2} - x\right) \sin \left(-x\right) + 1}$?

- \bigcirc $\frac{2 \sin x}{\cos^2 x}$

QUANTITATIVE COMPARISON In Exercises 10 and 11, choose the statement that is true about the given quantities.

- A The quantity in column A is greater.
- **B** The quantity in column B is greater.
- **C** The two quantities are equal.
- (**D**) The relationship cannot be determined from the given information.

	Column A	Column B					
10.	Amplitude of the graph of $y = -5 + 4 \sin 3\pi x$	Amplitude of the graph of $y = 3 - 5 \sin 2\pi x$					
11.	Period of the graph of $y = \tan 4\pi x$	Period of the graph of $y = 3 \tan 4x$					

12. MULTI-STEP PROBLEM The average daily time R of the sunrise and the average daily time S of the sunset for each month in Dallas, Texas, is given in the table. The variable t is measured in months, with t = 0 representing January 1.

t	0.5	1.5	2.5	3.5	4.5	5.5	6.5	7.5	8.5	9.5	10.5	11.5
R	7:29	7:10	6:37	5:58	5:29	5:20	5:31	5:51	6:11	6:32	6:58	7:21
s	17:45	18:12	18:36	18:58	19:20	19:36	19:35	19:11	18:33	17:54	17:27	17:24

- **a.** Use a graphing calculator to find trigonometric models for R and S as functions of t. When entering the data into the calculator, you must convert the number of minutes into a fraction of an hour. For example, enter 7:27 as 7 + (27/60).
- **b.** Graph the functions you found in part (a). Use a viewing window of $0 \le x \le 48$ and $0 \le y \le 24$. Describe the periods, amplitudes, and locations of local maximums and minimums. How are the functions alike? How are they different?
- **c.** Let D = S R. What does D represent?
- **d.** Graph *D* in the same viewing window as *R* and *S*. How are the maximums and minimums of the three functions related? Explain the real-life significance of the relationships.
- **13. MULTI-STEP PROBLEM** The average number of daylight hours D_M in Great Falls, Michigan, is given in the table. The variable t is measured in months, with t = 0 representing January 1.

١	t	0.5	1.5	2.5	3.5	4.5	5.5	6.5	7.5	8.5	9.5	10.5	11.5
I	D _M	8:57	10:18	11:55	13:38	15:07	15:54	15:31	14:14	12:34	10:51	9:21	8:32

- **a.** Use a calculator to find a trigonometric model for D_M as a function of t.
- **b.** Use the table given in Exercise 12. Subtract each *R*-value from its corresponding *S*-value to find the average number of hours of sunlight a day for each month in Dallas. Use a graphing calculator to find a trigonometric model for the data as a function of *t*.
- **c.** Graph the functions you found in parts (a) and (b). Use a viewing window of $0 \le x \le 48$ and $0 \le y \le 24$. Describe the periods, amplitudes, and locations of local maximums and minimums of the functions. How are the functions alike? How are they different? Do the graphs intersect? If so, where?