Write an equation of the line with the given characteristics. (2.4)

1. slope:
$$-2$$
, y-intercept: 7

2. points:
$$(5, 0), (-3, 2)$$

Solve the system. (3.1, 3.2, 3.6, 4.3, 4.5, 10.7)

4.
$$x - 2y = 6$$
 $3x + y = 4$

5.
$$x + y + z = 10$$

 $-x + 2y - z = 2$
 $3x - y + 4z = 10$

6.
$$x^2 + y^2 = 16$$

 $x^2 + y^2 - 6x - 8y + 16 = 0$

Solve the matrix equation. (4.4)

7.
$$\begin{bmatrix} 4 & 3 \\ -1 & -1 \end{bmatrix} X = \begin{bmatrix} 2 & -5 \\ 3 & -1 \end{bmatrix}$$
 8.
$$\begin{bmatrix} 5 & 3 \\ 7 & 4 \end{bmatrix} X = \begin{bmatrix} -1 & 6 \\ 2 & 0 \end{bmatrix}$$

8.
$$\begin{bmatrix} 5 & 3 \\ 7 & 4 \end{bmatrix} X = \begin{bmatrix} -1 & 6 \\ 2 & 0 \end{bmatrix}$$

$$\mathbf{9.} \begin{bmatrix} 8 & -1 \\ -2 & 0 \end{bmatrix} X = \begin{bmatrix} 6 & 0 \\ 3 & -2 \end{bmatrix}$$

Perform the indicated operations. (6.3, 6.5, 9.4, 9.5)

10.
$$(-2x^2 - x + 4) - (3x + 10)$$

11.
$$(x-4)(2x^2+3x-1)$$

12.
$$(x^3 - 5x + 6) \div (x - 2)$$

13.
$$\frac{x+6}{8x+10} \div \frac{x^2-36}{2x}$$

14.
$$\frac{6x}{x^2+3x-10}+\frac{x-4}{x-2}$$

15.
$$\frac{4x}{x-7} - \frac{1}{x+7}$$

Evaluate the expression without using a calculator. (7.1, 8.4)

17.
$$125^{-1/3}$$

18.
$$-9^{3/2}$$

19.
$$\sqrt[5]{-1}$$

20.
$$\sqrt[4]{10,000}$$

21.
$$\log_2 \frac{1}{16}$$

23.
$$\ln e^7$$

Find the distance between the two points. Then find the midpoint of the line segment connecting the two points. (10.1)

26.
$$(0,0), (3,-8)$$

28.
$$(-1, -4), (2, 3)$$

Write the next term of the sequence. Then write a rule for the nth term. (11.1 - 11.3)

33.
$$-6$$
, -1 , 4 , 9 , . . .

Find the sum of the series. (11.1-11.4)

34.
$$\sum_{i=1}^{10} 16$$

35.
$$\sum_{i=1}^{5} (3i-1)$$

36.
$$\sum_{i=0}^{4} 1000 \left(\frac{1}{2}\right)^{i}$$

36.
$$\sum_{i=0}^{4} 1000 \left(\frac{1}{2}\right)^{i}$$
 37. $\sum_{n=1}^{\infty} 2\left(-\frac{1}{3}\right)^{n-1}$

Find the number of permutations or combinations. (12.1, 12.2)

39.
$$_{10}P_2$$

40.
$$_3P_3$$

41.
$$_8C_1$$

42.
$$_4C_2$$

43.
$$_{7}C_{4}$$

Find the arc length and area of a sector with the given radius r and central angle θ . (13.2)

44.
$$r = 11$$
 cm, $\theta = 80^{\circ}$

45.
$$r = 6$$
 in., $\theta = 270^{\circ}$

46.
$$r = 3$$
 ft, $\theta = 120^{\circ}$

Evaluate the function without using a calculator. (13.3)

48.
$$\sin (-45^{\circ})$$

50.
$$\cot\left(-\frac{3\pi}{4}\right)$$
 51. $\cos\frac{5\pi}{3}$

51.
$$\cos \frac{5\pi}{3}$$

Evaluate the expression without using a calculator. Give your answer in both radians and degrees. (13.4)

52.
$$\cos^{-1} 0$$

53.
$$\sin^{-1} \frac{1}{2}$$

54.
$$tan^{-1}$$

53.
$$\sin^{-1}\frac{1}{2}$$
 54. $\tan^{-1}1$ **55.** $\cos^{-1}\left(-\frac{\sqrt{2}}{2}\right)$ **56.** $\tan^{-1}\left(-\sqrt{3}\right)$

56.
$$\tan^{-1}(-\sqrt{3})$$

Solve △*ABC*. (13.5, 13.6)

57.
$$A = 65^{\circ}, a = 7, b = 4$$

58.
$$B = 110^{\circ}, a = 3, c = 8$$
 59. $a = 10, b = 9, c = 4$

59.
$$a = 10, b = 9, c = 4$$

Find the area of $\triangle ABC$. (13.5, 13.6)

60.
$$A = 63^{\circ}, c = 13, b = 20$$

61.
$$C = 98^{\circ}$$
, $a = 34$, $b = 20$

62.
$$a = 7$$
, $b = 4$, $c = 6$

Graph the parametric equations. Then write an xy-equation and state the domain. (13.7)

63.
$$x = \frac{1}{4}t + 1$$
, $y = t - 3$ for $0 \le t \le 4$

64.
$$x = -2t$$
, $y = t + 3$ for $1 \le t \le 5$

Graph the function. (14.1, 14.2)

65.
$$y = 5 \cos 2x$$

66.
$$y = 4 \sin \frac{1}{3} \pi x$$

67.
$$y = 5 + \sin 4x$$

66.
$$y = 4 \sin \frac{1}{3}\pi x$$
 67. $y = 5 + \sin 4x$ **68.** $y = -3 + \tan \frac{1}{2}x$

Simplify the expression. (14.3)

69.
$$\tan (-x) + \tan x \sec^2 x$$

$$70. \ \frac{\sin\left(\frac{\pi}{2} - x\right)}{\sin x}$$

71.
$$\tan x \sec x - \csc x \sec^2 x$$

Find the general solution of the equation. (14.4)

72.
$$3 \sin x = \sqrt{3} + 5 \sin x$$

73.
$$2\cos^2\frac{x}{2} - 1 = 0$$

74.
$$\cos x \sin^2 x - \cos x = 0$$

Find the exact value of the expression. (14.6, 14.7)

78.
$$\tan \frac{\pi}{12}$$

78.
$$\tan \frac{\pi}{12}$$
 79. $\cos \frac{13\pi}{12}$

- **80. FRACTAL GEOMETRY** Tell whether c = 1 + i is in the Mandelbrot set. Use absolute value to justify your answer. (5.4)
- 81. S GIRLS BASKETBALL The heights (in inches) of the girls chosen for the first team on PARADE's 23rd annual All-America High School Girls Basketball Team are listed below. Find the mean, median, mode(s), range, and standard deviation of the heights. Draw a box-and-whisker plot for the heights.
 - ► Source: Parade Magazine (7.7)

- 82. EQUAL GENDERS What is the probability that a family with four children has exactly two girls and two boys in any order? Assume that having a girl and having a boy are equally likely events. (12.6)
- 83. RIALTO TOWER Suppose you are looking at the Rialto Tower in Melbourne, Australia, which reaches a height of 794 feet. Your angle of elevation to the top of the building is 39.8°. How far are you from the base of the building? Source: Council on Tall Buildings and Urban Habitat (13.1)
- 84. S BICYCLING As you pedal up a hill, the pedals on your mountain bike make one revolution every two seconds. The maximum height of the pedal is 19 inches above the ground and the minimum height is 5 inches above the ground. Write a trigonometric model for the height H of the pedal as a function of time t. (14.1, 14.2)