Chapter Summary

WHY did you learn it?
Find the altitude of a kite. (p. 771) Find the horizontal distance traveled by a golf ball. (p. 787)
Find the length of a zip-line at a ropes course. (p. 774) Find the distance between two buildings. (p. 805) Find the angle at which two trapeze artists meet. (p. 811)
Find the angle generated by a figure skater performing a jump. (p. 781) Find the area irrigated by a rotating sprinkler. (p. 781) Find the angle at which to set the arm of a crane.
(p. 794) Find the amount of paint needed for the side of a house. (p. 806) Find the area of the Dinosaur Diamond. (p. 812)
Model the path of a leaping dolphin. (p. 818) Find distances for a marching band on a football field. (p. 787)

How does Chapter 13 fit into the BIGGER PICTURE of algebra?

Trigonometry is closely tied to both algebra and geometry. In this chapter you studied trigonometric functions of *angles*, defined by ratios of side lengths of right triangles.

In the next chapter you will study trigonometric functions of *real numbers*, used to model periodic behavior. You will see even more connections between trigonometry and algebra as you graph trigonometric functions in a coordinate plane.

STUDY STRATEGY

How did you draw diagrams?

Here is an example of a diagram drawn for Exercise 22 on page 810, following the **Study Strategy** on page 768.

Chapter Review

VOCABULARY

- sine, p. 769
- cosine, p. 769
- tangent, p. 769
- · cosecant, p. 769
- secant, p. 769
- solving a right triangle, p. 770
- · cotangent, p. 769

- angle of elevation, p. 771
- angle of depression, p. 771
- initial side of an angle, p. 776
- terminal side of an angle, p. 776
- standard position, p. 776
- coterminal angles, p. 777

- radian, p. 777
- sector, p. 779
- central angle, p. 779
- quadrantal angle, p. 785
- reference angle, p. 785
- inverse sine, p. 792

- inverse cosine, p. 792
- inverse tangent, p. 792
- law of sines, p. 799
- law of cosines, p. 807
- parametric equations, p. 813
- parameter, p. 813

13.1

RIGHT TRIANGLE TRIGONOMETRY

Examples on pp. 769–771

EXAMPLE You can evaluate the six trigonometric functions of θ for the triangle shown. First find the hypotenuse length: $\sqrt{5^2 + 12^2} = \sqrt{169} = 13$.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{12}{13}$$
 $\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{5}{13}$ $\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{12}{5}$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{5}{13}$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{12}{5}$$

$$\csc \theta = \frac{\text{hyp}}{\text{opp}} = \frac{13}{12}$$
 $\sec \theta = \frac{\text{hyp}}{\text{adj}} = \frac{13}{5}$ $\cot \theta = \frac{\text{adj}}{\text{opp}} = \frac{5}{12}$

$$\cot \theta = \frac{\text{adj}}{\text{opp}} = \frac{5}{12}$$

Evaluate the six trigonometric functions of θ .

1.

3.

13.2

GENERAL ANGLES AND RADIAN MEASURE

Examples on pp. 776–779

EXAMPLES You can measure angles using degree measure or radian measure.

$$20^{\circ} = 20^{\circ} \left(\frac{\pi \text{ radians}}{180^{\circ}} \right) = \frac{\pi}{9} \text{ radians}$$

$$20^{\circ} = 20^{\circ} \left(\frac{\pi \text{ radians}}{180^{\circ}}\right) = \frac{\pi}{9} \text{ radians}$$
 $\frac{7\pi}{6} \text{ radians} = \left(\frac{7\pi}{6} \text{ radians}\right) \left(\frac{180^{\circ}}{\pi \text{ radians}}\right) = 210^{\circ}$

Arc length of the sector at the right: $s = r\theta = 8\left(\frac{2\pi}{3}\right) = \frac{16\pi}{3}$ inches

Rewrite each degree measure in radians and each radian measure in degrees.

7.
$$-15^{\circ}$$
 8. $\frac{3\pi}{4}$ **9.** $\frac{5\pi}{3}$

9.
$$\frac{5\pi}{3}$$

10.
$$\frac{\pi}{3}$$

Find the arc length and area of a sector with the given radius r and central angle θ .

11.
$$r = 5$$
 ft, $\theta = \frac{\pi}{2}$

12.
$$r = 12$$
 in., $\theta = 25^{\circ}$

13.
$$r = 16$$
 cm, $\theta = 210^{\circ}$

13.3 TRIGONOMETRIC FUNCTIONS OF ANY ANGLE Examples on pp. 784-787

EXAMPLE You can evaluate the six trigonometric functions of $\theta = 240^{\circ}$ using a reference angle: $\theta' = \theta - 180^{\circ} = 240^{\circ} - 180^{\circ} = 60^{\circ}$.

$$\sin 240^{\circ} = -\sin 60^{\circ} = -\frac{\sqrt{3}}{2}$$

$$\sin 240^\circ = -\sin 60^\circ = -\frac{\sqrt{3}}{2}$$
 $\qquad \qquad \csc 240^\circ = -\csc 60^\circ = -\frac{2\sqrt{3}}{3}$

$$\cos 240^{\circ} = -\cos 60^{\circ} = -\frac{1}{2}$$
 $\sec 240^{\circ} = -\sec 60^{\circ} = -2$

$$\sec 240^\circ = -\sec 60^\circ = -2$$

$$\tan 240^\circ = +\tan 60^\circ = \sqrt{3}$$

$$\tan 240^{\circ} = +\tan 60^{\circ} = \sqrt{3}$$
 $\cot 240^{\circ} = +\cot 60^{\circ} = \frac{\sqrt{3}}{3}$

Evaluate the function without using a calculator.

14.
$$\tan \frac{11\pi}{4}$$

14.
$$\tan \frac{11\pi}{4}$$
 15. $\cos \frac{11\pi}{6}$ **16.** $\sec 225^{\circ}$ **17.** $\sin 390^{\circ}$

13.4 **INVERSE TRIGONOMETRIC FUNCTIONS** Examples on pp. 792–794

EXAMPLE You can find an angle within a certain range that corresponds to a given value of a trigonometric function.

To find $\cos^{-1}\left(-\frac{\sqrt{2}}{2}\right)$, find θ so that $\cos\theta = -\frac{\sqrt{2}}{2}$ and $0^{\circ} \le \theta \le 180^{\circ}$.

So,
$$\theta = \cos^{-1}\left(-\frac{\sqrt{2}}{2}\right) = 135^{\circ}\left(\text{or }\frac{3\pi}{4}\text{ radians}\right)$$
.

Evaluate the expression without using a calculator. Give your answer in both radians and degrees.

19.
$$\sin^{-1} \frac{\sqrt{2}}{2}$$

20.
$$\tan^{-1} \frac{\sqrt{3}}{3}$$

21.
$$\cos^{-1} 0$$

22.
$$tan^{-1}(-1)$$

19.
$$\sin^{-1} \frac{\sqrt{2}}{2}$$
 20. $\tan^{-1} \frac{\sqrt{3}}{3}$ **21.** $\cos^{-1} 0$ **22.** $\tan^{-1} (-1)$ **23.** $\cos^{-1} \left(-\frac{1}{2}\right)$

13.5 THE LAW OF SINES Examples on

EXAMPLE You can solve the triangle shown using the law of sines.

The measure of the third angle is: $B = 180^{\circ} - 105^{\circ} - 48^{\circ} = 27^{\circ}$.

$$\frac{a}{\sin 105^\circ} = \frac{12}{\sin 27^\circ}$$

$$\frac{c}{\sin 48^\circ} = \frac{12}{\sin 27^\circ}$$

$$a = \frac{12 \sin 105^{\circ}}{\sin 27^{\circ}} \approx 25.5$$

$$a = \frac{12 \sin 105^{\circ}}{\sin 27^{\circ}} \approx 25.5$$
 $c = \frac{12 \sin 48^{\circ}}{\sin 27^{\circ}} \approx 19.6$

Area of this triangle = $\frac{1}{2}bc \sin A = \frac{1}{2}(12)(19.6) \sin 105^{\circ} \approx 114$ square units

Solve $\triangle ABC$. (Hint: Some of the "triangles" may have no solution and some may have two.)

24.
$$A = 45^{\circ}, B = 60^{\circ}, c = 44$$

25.
$$B = 18^{\circ}, b = 12, a = 19$$

26.
$$C = 140^{\circ}, c = 40, b = 20$$

Find the area of the triangle with the given side lengths and included angle.

27.
$$C = 35^{\circ}, b = 10, a = 22$$

28.
$$A = 110^{\circ}, b = 8, c = 7$$
 29. $B = 25^{\circ}, a = 15, c = 31$

29.
$$B = 25^{\circ}$$
, $a = 15$, $c = 31$

13.6

THE LAW OF COSINES

Examples on pp. 807-809

EXAMPLE You can solve the triangle below using the law of cosines.

Law of cosines:
$$b^2 = 35^2 + 37^2 - 2(35)(37) \cos 25^\circ \approx 247$$

$$b \approx 15.7$$

Law of sines:
$$\frac{\sin A}{35} \approx \frac{\sin 25^{\circ}}{15.7}$$
, $\sin A \approx \frac{35 \sin 25^{\circ}}{15.7}$, $A \approx 70.4^{\circ}$

$$C \approx 180^{\circ} - 25^{\circ} - 70.4^{\circ} = 84.6^{\circ}$$

You can use Heron's formula to find the area of this triangle:

$$s \approx \frac{1}{2}(35 + 15.7 + 37) \approx 44$$
, so area $\approx \sqrt{44(44 - 35)(44 - 15.7)(44 - 37)} \approx 280$ square units

Solve $\triangle ABC$.

30.
$$a = 25$$
, $b = 18$, $c = 28$

31.
$$a = 6$$
, $b = 11$, $c = 14$

30.
$$a = 25, b = 18, c = 28$$
 31. $a = 6, b = 11, c = 14$ **32.** $B = 30^{\circ}, a = 80, c = 70$

Find the area of $\triangle ABC$ having the given side lengths.

33.
$$a = 11, b = 2, c = 12$$

31
$$a = 1$$
 $b = 21$ $c = 26$

34.
$$a = 4, b = 24, c = 26$$
 35. $a = 15, b = 8, c = 21$

13.7

PARAMETRIC EQUATIONS AND PROJECTILE MOTION

Examples on pp. 813–815

EXAMPLE You can graph the parametric equations x = -3t and y = -t for $0 \le t \le 3$. Make a table of values, plot the points (x, y), and connect the points.

t	0	1	2	3
x	0	-3	-6	-9
у	0	-1	-2	-3

To write an xy-equation for these parametric equations, solve the first equation for t: $t = -\frac{1}{3}x$. Substitute into the second equation: $y = \frac{1}{3}x$. The domain is $-9 \le x \le 0$.

Graph the parametric equations.

36.
$$x = 3t + 1$$
 and $y = 3t + 6$ for $0 \le t \le 5$

37.
$$x = 2t + 4$$
 and $y = -4t + 2$ for $2 \le t \le 5$

Write an xy-equation for the parametric equations. State the domain.

38.
$$x = 5t$$
 and $y = t + 7$ for $0 \le t \le 20$

39.
$$x = 2t - 3$$
 and $y = -4t + 5$ for $0 \le t \le 8$

Chapter Test

Evaluate the six trigonometric functions of θ .

2.

Rewrite each degree measure in radians and each radian measure in degrees.

7.
$$-60^{\circ}$$

8.
$$\frac{\pi}{9}$$

9.
$$5\pi$$

10.
$$-\frac{5\pi}{4}$$

Find the arc length and area of a sector with the given radius r and central angle θ .

11.
$$r = 4$$
 ft, $\theta = 240^{\circ}$

12.
$$r = 20 \text{ cm}, \theta = 45^{\circ}$$

13.
$$r = 12$$
 in., $\theta = 150^{\circ}$

Evaluate the function without using a calculator.

15.
$$\sec (-30^{\circ})$$

17.
$$\sin \frac{7\pi}{6}$$

18.
$$\tan\left(-\frac{\pi}{4}\right)$$

15.
$$\sec{(-30^\circ)}$$
 16. $\cot{495^\circ}$ **17.** $\sin{\frac{7\pi}{6}}$ **18.** $\tan{\left(-\frac{\pi}{4}\right)}$ **19.** $\csc{\left(-\frac{7\pi}{4}\right)}$

Evaluate the expression without using a calculator. Give your answer in both

20.
$$\sin^{-1} 1$$

21.
$$\tan^{-1} \sqrt{3}$$

22.
$$\cos^{-1} \frac{\sqrt{3}}{2}$$

23.
$$tan^{-1} 0$$

24.
$$\cos^{-1} 1$$

21.
$$\tan^{-1} \sqrt{3}$$
 22. $\cos^{-1} \frac{\sqrt{3}}{2}$ **23.** $\tan^{-1} 0$ **24.** $\cos^{-1} 1$ **25.** $\sin^{-1} \left(-\frac{\sqrt{2}}{2} \right)$

Solve $\triangle ABC$.

27.

29.

30.
$$A = 120^{\circ}, a = 14, b = 10$$
 31. $B = 40^{\circ}, a = 7, c = 10$

31
$$R = 40^{\circ}$$
 $q = 7$ $c = 10^{\circ}$

32.
$$C = 105^{\circ}, a = 4, b = 3$$

Find the area of $\triangle ABC$.

33.

35.

36.

Graph the parametric equations. Then write an xy-equation and state the domain.

37.
$$x = 2t - 3$$
 and $y = -5t + 6$ for $1 \le t \le 4$

38.
$$x = t - 4$$
 and $y = -t + 6$ for $0 \le t \le 6$