Using Technology

STUDENT HELP

www.mcdougallittell.com

See keystrokes for several models of calculators at

KEYSTROKE

Graphing Calculator Activity for use with Lesson 8.5

Graphing Logarithmic Functions

You can use a graphing calculator to graph logarithmic functions simply by using the cog or key. To graph a logarithmic function having a base other than 10 or e, you need to use the change-of-base formula to rewrite the function in terms of common or natural logarithms.

EXAMPLE

Use a graphing calculator to graph $y = \log_2 x$ and $y = \log_2 (x - 3) + 1$.

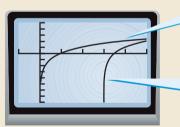
SOLUTION

1 Rewrite each function in terms of common logarithms.

$$y = \log_2 x$$

$$y = \log_2 (x - 3) + 1$$

$$= \frac{\log x}{\log 2}$$


$$= \frac{\log (x - 3)}{\log 2} + 1$$

2 Enter each function into a graphing calculator.

Although the calculator will correctly evaluate the function without parentheses, you can include them for clarity.

3 Graph the functions.

The graph of $y = \log_2 x$ passes through (1, 0), and the line x = 0 is a vertical asymptote.

The graph of $y = \log_2(x-3) + 1$ passes through (4, 1), and the line x = 3 is a vertical asymptote.

EXERCISES

Use a graphing calculator to graph the function. Give the coordinates of a point through which the graph passes, and state the vertical asymptote of the graph.

1.
$$y = \log_3 x$$

2.
$$y = \log_9 x$$

3.
$$y = \log_4 x$$

4.
$$y = \log_7 x$$

5.
$$y = \log_5 x$$

5.
$$y = \log_5 x$$
 6. $y = \log_{11} x$

7.
$$y = \log_5(x-2)$$

8
$$y = \log_{10}(x + 1)$$

7.
$$y = \log_5(x - 2)$$
 8. $y = \log_4(x + 1)$ **9.** $y = \log_2(x - 5) - 3$

10.
$$y = \log_4(x - 7) + 9$$

10.
$$y = \log_4(x - 7) + 9$$
 11. $y = \log_5(x + 2) + 6$ **12.** $y = \log_7(x - 4) + 4$

12.
$$v = \log_7(x - 4) + 4$$

13. Compare the domains of the graphs of $y = \log x$ and $y = \log |x|$.