8.5

What you should learn

GOAL Use properties of logarithms.

GOAL(2) Use properties of logarithms to solve **real-life** problems, such as finding the energy needed for molecular transport in **Exs. 77–79**.

Why you should learn it

▼ To model **real-life** quantities, such as the loudness of different sounds in **Example 5**.

Airport workers wear hearing protection because of the loudness of jet engines.

Properties of Logarithms

USING PROPERTIES OF LOGARITHMS

Because of the relationship between logarithms and exponents, you might expect logarithms to have properties similar to the properties of exponents you studied in Lesson 6.1.

🜔 ACTIVITY

Investigating a Property of Logarithms

1 Copy and complete the table one row at a time.

log _b u	log _b v	log _b uv
$\log 10 = ?$	$\log 100 = ?$	$\log 1000 = ?$
$\log 0.1 = ?$	$\log 0.01 = ?$	$\log 0.001 = ?$
$\log_2 4 = ?$	$\log_2 8 = ?$	$\log_2 32 = ?$

2 Use the completed table to write a conjecture about the relationship among log_b u, log_b v, and log_b uv.

In the activity you may have discovered one of the properties of logarithms listed below.

PROPERTIES OF LOGARITHMS

Let *b*, *u*, and *v* be positive numbers such that $b \neq 1$. **PRODUCT PROPERTY** $\log_b uv = \log_b u + \log_b u^2$

QUOTIENT PROPERTY

POWER PROPERTY

 $\log_b uv = \log_b u + \log_b v$ $\log_b \frac{u}{v} = \log_b u - \log_b v$ $\log_b u^n = n \log_b u$

EXAMPLE 1

Using Properties of Logarithms

Use $\log_5 3 \approx 0.683$ and $\log_5 7 \approx 1.209$ to approximate the following.

a. $\log_5 \frac{3}{7}$ **b.** $\log_5 21$ **c.** $\log_5 49$

SOLUTION

a. $\log_5 \frac{3}{7} = \log_5 3 - \log_5 7 \approx 0.683 - 1.209 = -0.526$ **b.** $\log_5 21 = \log_5 (3 \cdot 7) = \log_5 3 + \log_5 7 \approx 0.683 + 1.209 = 1.892$ **c.** $\log_5 49 = \log_5 7^2 = 2 \log_5 7 \approx 2(1.209) = 2.418$ You can use the properties of logarithms to expand and condense logarithmic expressions.

EXAMPLE 2 Expanding a Logarithmic Expression

Expand $\log_2 \frac{7x^3}{y}$. Assume x and y are positive.

SOLUTION

 $\log_2 \frac{7x^3}{y} = \log_2 7x^3 - \log_2 y$ **Quotient property** $= \log_2 7 + \log_2 x^3 - \log_2 y$ **Product property** $= \log_2 7 + 3 \log_2 x - \log_2 y$ **Power property**

EXAMPLE 3 Condensing a Logarithmic Expression

Condense $\log 6 + 2 \log 2 - \log 3$.

SOLUTION

$$\log 6 + 2 \log 2 - \log 3 = \log 6 + \log 2^2 - \log 3$$

$$= \log (6 \cdot 2^2) - \log 3$$
Product property
$$= \log \frac{6 \cdot 2^2}{3}$$
Quotient property
$$= \log 8$$
Simplify.

.

Logarithms with any base other than 10 or *e* can be written in terms of common or natural logarithms using the change-of-base formula.

CHANGE-OF-BASE FORMULA

Let *u*, *b*, and *c* be positive numbers with $b \neq 1$ and $c \neq 1$. Then:

 $\log_c u = \frac{\log_b u}{\log_b c}$ In particular, $\log_c u = \frac{\log u}{\log c}$ and $\log_c u = \frac{\ln u}{\ln c}$.

EXAMPLE 4

Using the Change-of-Base Formula

Evaluate the expression log₃ 7 using common and natural logarithms.

SOLUTION

Using common logarithms: $\log_3 7 = \frac{\log 7}{\log 3} \approx \frac{0.8451}{0.4771} \approx 1.771$ Using natural logarithms: $\log_3 7 = \frac{\ln 7}{\ln 3} \approx \frac{1.946}{1.099} \approx 1.771$

STUDENT HELP Study Tip

When you are expanding or condensing an expression involving logarithms, you may assume the variables are positive.

GOAL 2

Acoustics

Using Properties of Logarithms **EXAMPLE 5**

USING LOGARITHMIC PROPERTIES IN REAL LIFE

The loudness L of a sound (in decibels) is related to the intensity I of the sound (in watts per square meter) by the equation

$$L = 10 \log \frac{I}{I_0}$$

where I_0 is an intensity of 10^{-12} watt per square meter, corresponding roughly to the faintest sound that can be heard by humans.

- a. Two roommates each play their stereos at an intensity of 10^{-5} watt per square meter. How much louder is the music when both stereos are playing, compared with when just one stereo is playing?
- **b**. Generalize the result from part (a) by using I for the intensity of each stereo.

SOLUTION

Let L_1 be the loudness when one stereo is playing and let L_2 be the loudness when both stereos are playing.

a. Increase in loudness $= L_2 - L_1$

$$= 10 \log \frac{2 \cdot 10^{-5}}{10^{-12}} - 10 \log \frac{10^{-5}}{10^{-12}}$$
$$= 10 \log (2 \cdot 10^{7}) - 10 \log 10^{7}$$
$$= 10(\log 2 + \log 10^{7} - \log 10^{7})$$
$$= 10 \log 2$$

 ≈ 3

Simplify. **Product property** Simplify. Use a calculator.

Substitute for L_2 and L_1 .

- - The sound is about 3 decibels louder.
- **b.** Increase in loudness $= L_2 L_1$

$$= 10 \log \frac{2I}{10^{-12}} - 10 \log \frac{I}{10^{-12}}$$
$$= 10 \left(\log \frac{2I}{10^{-12}} - \log \frac{I}{10^{-12}} \right)$$
$$= 10 \left(\log 2 + \log \frac{I}{10^{-12}} - \log \frac{I}{10^{-12}} \right)$$
$$= 10 \log 2$$
$$\approx 3$$

Again, the sound is about 3 decibels louder. This result tells you that the loudness increases by 3 decibels when both stereos are played regardless of the intensity of each stereo individually.

SOUND **TECHNICIAN** Sound technicians operate technical equipment to amplify, enhance, record, mix, or reproduce sound. They may work in radio or television recording studios or at live performances.

👍 CAREER LINK www.mcdougallittell.com

Decibel level	Example
130	Jet airplane takeoff
120	Riveting machine
110	Rock concert
100	Boiler shop
90	Subway train
80	Average factory
70	City traffic
60	Conversational speech
50	Average home
40	Quiet library
30	Soft whisper
20	Quiet room
10	Rustling leaf
0	Threshold of hearing

GUIDED PRACTICE

Vocabulary Check 🗸	1 . Give an exampl	e of the property of	logarithms.	
	a . product prop	erty b . quoti	ent property	c . power property
Concept Check 🗸	2 . Which is equiva	alent to $\log\left(\frac{7}{9}\right)^2$? E	Explain.	
	A. $2(\log 7 - \log 7)$	$\mathbf{g} \ 9) \qquad \mathbf{B.} \ \frac{2\log 9}{\log 9}$	$\frac{7}{2}$	C . Neither A nor B
	3 . Which is equiva	alent to $\log_8 (5x^2 +$	3)? Explain.	
	A. $\log_8 5x^2 + \log_8 5x^2$	B. log ₈ 3	$5x^2 \cdot \log_8 3$	C . Neither A nor B
	4 . Describe two w	ays to find the value	e of log ₆ 11 using a	calculator.
Skill Check 🗸	Use a property of I	ogarithms to eval	uate the expression	n.
	5 . log ₃ (3 • 9)	6. $\log_2 4^5$	7. $\log_3 \frac{1}{3}$	8. $\log_5 \left(\frac{1}{5}\right)^3$
	Use $\log_2 7 \approx 2.81$ and $\log_2 21 \approx 4.39$ to approximate the value of the expression.			
	9. log ₂ 3	10 . log ₂ 49	11 . log ₂ 147	12. log ₂ 441
	13. 🎒 Sound In	TENSITY Use the 1	loudness of sound ed	quation in Example 5 to

13. Sound INTENSITY Use the loudness of sound equation in Example 5 to find the difference in the loudness of an average office with an intensity of 1.26×10^{-7} watt per square meter and a broadcast studio with an intensity of 3.16×10^{-10} watt per square meter.

PRACTICE AND APPLICATIONS

→ Extra Practice	EVALUATING EXPRESSIONS Use a property of logarithms to evaluate the expression.			
to help you master	14. log ₂ (4 • 16)	15. $\ln e^{-2}$	16. $\log_2 4^3$	17 . log ₅ 125
skills is on p. 951.	18 . log ₃ 9 ⁴	19. $\log \frac{1}{10}$	20. $\ln \frac{1}{e^3}$	21. $\log (0.01)^3$
		GEXPRESSIONS Us value of the express	se log 5 $pprox$ 0.699 and sion.	log 15 \approx 1.176 to
	22. log 3	23 . log 25	24. log 75	25. log 125
	26. $\log \frac{1}{5}$	27. log 225	28. $\log \frac{1}{15}$	29. $\log \frac{1}{3}$
STUDENT HELP	EXPANDING EXF	PRESSIONS Expand	the expression.	
HOMEWORK HELP	30 . log ₂ 9 <i>x</i>	31. ln 22 <i>x</i>	32. $\log 4x^5$	33. $\log_6 x^6$
Example 1: Exs. 14–29 Example 2: Exs. 30–45 Example 3: Exs. 46–57	34. $\log_4 \frac{4}{3}$	35 . log ₃ 25	36. $\log_6 \frac{10}{3}$	37 . ln 3 <i>xy</i> ³
Example 4: Exs. 58–73	38. $\log 6x^3yz$	39. $\log_8 64x^2$	40. $\ln x^{1/2}y^3$	41. $\log_3 12^{5/6} x^9$
Example 5: Exs. 74–85	42. $\log \sqrt{x}$	43. $\ln \frac{3y^4}{x^3}$	44. $\log \sqrt[4]{x^3}$	45. $\log_2 \sqrt{4x}$

FOCUS ON APPLICATIONS

PHOTOGRAPHY Photographers use f-stops to achieve the desired amount of light in a photo. The smaller the f-stop number, the more light the lens transmits.

APPLICATION LINK

CONDENSING EXPRESSIONS Condense the expression.

46. $\log_5 8 - \log_5 12$	47 . ln 16 – ln 4
48. $2 \log x + \log 5$	49. $4 \log_{16} 12 - 4 \log_{16} 2$
50. $3 \ln x + 5 \ln y$	51. $7 \log_4 2 + 5 \log_4 x + 3 \log_4 y$
52. $\ln 20 + 2 \ln \frac{1}{2} + \ln x$	53. $\log_3 2 + \frac{1}{2} \log_3 y$
54. $10 \log x + 2 \log 10$	55. $3(\ln 3 - \ln x) + (\ln x - \ln 9)$
56. $2(\log_6 15 - \log_6 5) + \frac{1}{2}\log_6 \frac{1}{25}$	57. $\frac{1}{4}\log_5 81 - \left(2\log_5 6 - \frac{1}{2}\log_5 4\right)$
CHANGE OF BACE FORMULA Has the	hange of base formule to evolute

CHANGE-OF-BASE FORMULA Use the change-of-base formula to evaluate the expression.

58. log ₅ 7	59. log ₇ 12	60. log ₃ 16	61 . log ₉ 25
62. log ₂ 5	63. log ₆ 9	64. log ₃ 17	65. log ₅ 32
66. log ₂ 125	67. log ₆ 24	68. log ₄ 19	69 . log ₁₆ 81
70. $\log_8 \frac{22}{7}$	71. $\log_9 \frac{5}{16}$	72. $\log_2 \frac{4}{15}$	73. $\log_5 \frac{32}{3}$

PHOTOGRAPHY In Exercises 74–76, use the following information.

The f-stops on a 35 millimeter camera control the amount of light that enters the camera. Let *s* be a measure of the amount of light that strikes the film and let f be the f-stop. Then *s* and *f* are related by this equation:

$$s = \log_2 f^2$$

- **74.** Expand the expression for *s*.
- **75.** The table shows the first eight f-stops on a 35 millimeter camera. Copy and complete the table. Then describe the pattern.

f	1.414	2.000	2.828	4.000	5.657	8.000	11.314	16.000
s	?	?	?	?	?	?	?	?

76. Many 35 millimeter cameras have nine f-stops. What do you think the ninth f-stop is? Explain your reasoning.

SCIENCE CONNECTION In Exercises 77–79, use the following information.

The energy E (in kilocalories per gram-molecule) required to transport a substance from the outside to the inside of a living cell is given by

$$E = 1.4(\log C_2 - \log C_1)$$

where C_2 is the concentration of the substance inside the cell and C_1 is the concentration outside the cell.

- **77.** Condense the expression for *E*.
- **78.** The concentration of a particular substance inside a cell is twice the concentration outside the cell. How much energy is required to transport the substance from outside to inside the cell?
- **79.** The concentration of a particular substance inside a cell is six times the concentration outside the cell. How much energy is required to transport the substance from outside to inside the cell?

FOCUS ON APPLICATIONS

RALPH E. ALLISON developed the first single zero-point audiometer in 1937, making the equipment usable for doctors who had previously used tuning forks to test hearing.

Sound 20 and equation from Example 5.

- 80. The intensity of the sound made by a propeller aircraft is 0.316 watts per square meter. Find the decibel level of a propeller aircraft. To what sound in the table from Example 5 is a propeller aircraft's sound most similar?
- **81.** The intensity of the sound made by Niagara Falls is 0.003 watts per square meter. Find the decibel level of Niagara Falls. To what sound in the table from Example 5 is the sound of Niagara Falls most similar?
- 82. Three groups of people are in a room, and each group is having a conversation at an intensity of 1.4×10^{-7} watt per square meter. What is the decibel level of the combined conversations in the room?
- 83. Five cars are in a parking garage, and the sound made by each running car is at an intensity of 3.16×10^{-4} watt per square meter. What is the decibel level of the sound produced by all five cars in the parking garage?
- 84. A certain sound has an intensity of I watts per square meter. By how many decibels does the sound increase when the intensity is tripled?
- 85. A certain sound has an intensity of I watts per square meter. By how many decibels does the sound decrease when the intensity is halved?
- **86.** CRITICAL THINKING Tell whether this statement is *true* or *false*: $\log (u + v) = \log u + \log v$. If true, prove it. If false, give a counterexample.
- **87.** Writing Let *n* be an integer from 1 to 20. Use only the fact that $\log 2 \approx 0.3010$ and log $3 \approx 0.4771$ to find as many values of log *n* as you possibly can. Show how you obtained each value. What can you conclude about the values of n for which you *cannot* find log *n*?
- **88. MULTIPLE CHOICE** Which of the following is *not* correct?

(A) $\log_2 24 = \log_2 6 + \log_2 4$	(B) $\log_2 24 = \log_2 72 - \log_2 3$
$\bigcirc \log_2 24 = \log_2 8 + \log_2 16$	(D) $\log_2 24 = 2 \log_2 2 + \log_2 6$

- **89. MULTIPLE CHOICE** Which of the following is equivalent to $\log_5 8$? **(A)** $\frac{\log 5}{\log 8}$ **(B)** $\frac{\log 8}{\log 5}$ **(C)** $\frac{\ln 8}{\ln 5}$ **(D)** $\frac{\ln 13}{\ln 5}$ **(E)** Both B and C
- **90. MULTIPLE CHOICE** Which of the following is equivalent to $4 \log_3 5$?

```
(\mathbf{A}) \log_3 20
             (B) \log_3 625 (C) \log_3 60 (D) \log_3 243 (E) Both B and C
```

★ Challenge 91. LOGICAL REASONING Use the given hint and properties of exponents to prove each property of logarithms.

> **a.** Product property (*Hint*: Let $x = \log_b u$ and let $y = \log_b v$. Then $u = b^x$ and $v = b^y$ so that $\log_b uv = \log_b (b^x \cdot b^y)$.)

b. Quotient property (*Hint*: Let $x = \log_b u$ and let $y = \log_b v$. Then $u = b^x$ and $v = b^y$ so that $\log_b \frac{u}{v} = \log_b \frac{b^x}{u^y}$.)

- **c.** Power property (*Hint*: Let $x = \log_b u$. Then $u = b^x$ and $u^n = b^{nx}$ so that $\log_b u^n = \log_b (b^{nx}).)$
- **d**. Change-of-base formula (*Hint*: Let $x = \log_b u$, $y = \log_b c$, and $z = \log_c u$. Then $u = b^x$, $c = b^y$, and $u = c^z$ so that $b^x = c^z$.)

EXTRA CHALLENGE

www.mcdougallittell.com

MIXED REVIEW

SIMPLIFYING EXPRESSIONS Simplify the expression. (Review 6.1)

92. $3y^2 \cdot y^2$	93. $(y^4)^3$	94. $(x^3y)^4$	95. $(-3x^2)^2$
96. $4x^{-1}y$	97. $xy^{-2}x$	98. $\frac{x^3}{x^{-1}}$	99. $\frac{4x^2y^7}{8xy^{-1}}$

SOLVING RADICAL EQUATIONS Solve the equation. Check for extraneous solutions. (Review 7.6 for 8.6)

100.
$$\sqrt[4]{x+2} + 9 = 14$$

102.
$$\sqrt{3x} + 7 = x + 3$$

101. $\sqrt[3]{3x-4} = \sqrt[3]{x+10}$

EVALUATING EXPRESSIONS Use a calculator to evaluate the expression. Round the result to three decimal places. (Review 8.3, 8.4 for 8.6)

104. <i>e</i> ⁹	105. e^{-12}	106. $e^{1.7}$	107. $e^{-5.632}$
108. log 15	109. log 1.729	110. ln 16	111. ln 5.89

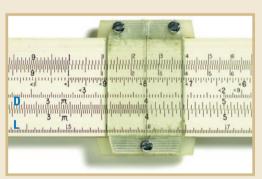
THEN

NOW

Logarithms

IN 1614, John Napier published his discovery of logarithms. This discovery allowed calculations with exponents to be performed more easily. In 1632 William Oughtred set two logarithmic scales side by side to form the first slide rule. Because the slide rule could be used to multiply, divide, raise to powers, and take roots, it eliminated the need for many tedious paper-and-pencil calculations.

1. To approximate the logarithm of a number,

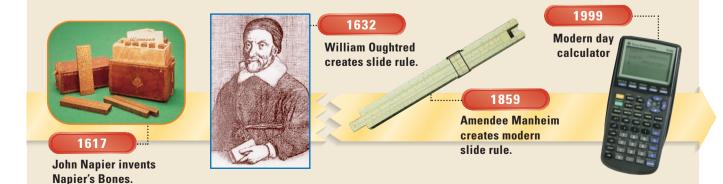


APPLICATION LINK

www.mcdougallittell.com

- look at the number on the D row and the corresponding value on the L row of the slide rule shown above. For example, $\log 4 \approx 0.6$. Approximate $\log 3$ and $\log 5$.
- **2**. Use the product property of logarithms to find log 15.

TODAY, calculators have replaced the use of slide rules but not the use of logarithms. Logarithms are still used for scaling purposes, such as the decibel scale and the Richter scale, because the numbers involved span many orders of magnitude.



103. $(5x)^{1/2} - 18 = 32$

8.5 Properties of Logarithms 499