Plot the numbers on a number line. Write the numbers in increasing order. (1.1)

1. 0,
$$\pi$$
, $2\frac{3}{4}$, $-\frac{3}{2}$, 4

2.
$$\frac{5}{2}$$
, $-\frac{1}{10}$, -2 , $\sqrt{5}$, 1.9

2.
$$\frac{5}{2}$$
, $-\frac{1}{10}$, -2 , $\sqrt{5}$, 1.9 **3.** -4.25 , $-\frac{16}{3}$, $-\sqrt{9}$, -0.4 , -1

Identify the property shown. (1.1)

4.
$$8 \cdot \frac{1}{8} = 1$$

5.
$$-1(9+7) = (-1)9 + (-1)7$$

5.
$$-1(9+7) = (-1)9 + (-1)7$$
 6. $-6 \cdot (-3 \cdot 4) = (-6 \cdot (-3)) \cdot 4$

Evaluate the expression. (1.2)

7.
$$12 \div 2 - 4 \cdot 7$$

8.
$$-8 + 3(1-5)^2$$

9.
$$17 - 2^4 \div 8 + 1$$

7.
$$12 \div 2 - 4 \cdot 7$$
 8. $-8 + 3(1 - 5)^2$ **9.** $17 - 2^4 \div 8 + 1$ **10.** $-2(16 + 7) \div -10$

Simplify the expression. (1.2)

11.
$$18a + 7a - 9a + 11$$

12.
$$10x - (4y - x) + y$$
 13. $6(n^2 - n) - 5n^2 + 8n$

13
$$6(n^2-n)-5n^2+8n$$

Solve the equation. (1.3, 1.7)

14.
$$\frac{5}{8}x - 9 = 21$$

15.
$$-75 = 9x - 3$$

14.
$$\frac{5}{8}x - 9 = 21$$
 15. $-75 = 9x - 3$ **16.** $4(2x - 1) = -20$ **17.** $3 - x = 5x + 27$

17.
$$3 - x = 5x + 27$$

18.
$$|x| = 9$$

19.
$$|4x + 1| = 39$$

19.
$$|4x + 1| = 39$$
 20. $|7 - 2x| = 15$ **21.** $|x - 10| = 0$

21
$$|x-10|=0$$

Solve the formula for the indicated variable. (1.4)

22. Distance

Solve for
$$r$$
: $d = rt$

23. Volume of a Cylinder

Solve for h: $V = \pi r^2 h$

24. Area of a Trapezoid

Solve for
$$h: A = \frac{1}{2}(b_1 + b_2)h$$

Solve the inequality. Then graph the solution. (1.6, 1.7)

25.
$$14 - 5x > -6$$

26.
$$1 \le x - 13 \le 20$$

27.
$$3x - 2 \le 0$$
 or $x + 6 > 8$

28.
$$|x-7| \le 1$$

28.
$$|x-7| \le 1$$
 29. $|7x-9| \ge 12$ **30.** $\left|\frac{1}{4}x+3\right| > 5$ **31.** $\left|-5x\right| < 10$

30.
$$\left| \frac{1}{4}x + 3 \right| > 5$$

31.
$$|-5x| < 10$$

Graph the relation. Then tell whether the relation is a function. (2.1)

Graph in a coordinate plane. (2.1, 2.3, 2.6-2.8)

34.
$$y = -2x + 5$$

35.
$$x - 3y = 6$$

36.
$$y = 2$$

37.
$$x = -4$$

38.
$$y > \frac{2}{5}x - 2$$
 39. $y \le -1$ **40.** $4x + 3y \le 24$ **41.** $y > -x$

39.
$$v \le -1$$

40.
$$4x + 3y \le 24$$

12.
$$f(x) = 4|x|$$

43
$$f(x) = |x| - 3$$

44.
$$f(x) = 2|x+2|$$

42.
$$f(x) = 4|x|$$
 43. $f(x) = |x| - 3$ **44.** $f(x) = 2|x + 2|$ **45.** $f(x) = -|x - 5| + 1$

46.
$$f(x) = \begin{cases} 2x, & \text{if } x \le 0 \\ -2x, & \text{if } x > 0 \end{cases}$$

46.
$$f(x) = \begin{cases} 2x, & \text{if } x \le 0 \\ -2x, & \text{if } x > 0 \end{cases}$$
 47. $f(x) = \begin{cases} \frac{1}{2}x + 1, & \text{if } x \le -2 \\ x + 1, & \text{if } x > -2 \end{cases}$ **48.** $f(x) = \begin{cases} 4, & \text{if } -5 \le x < 0 \\ -4, & \text{if } 0 \le x \le 5 \end{cases}$

48.
$$f(x) = \begin{cases} 4, & \text{if } -5 \le x < 0 \\ -4, & \text{if } 0 \le x \le 5 \end{cases}$$

Graph the system. Describe the solution(s). (3.1, 3.3)

49.
$$4x - 2y = 8$$
 $4x + y = 2$

50.
$$y = x$$

 $y = x - 3$
 $y = x + 5$

51.
$$2x - y > 1$$
 $x < 3$ **52.** $x \ge 0$ $y \ge 0$

$$\begin{array}{l}
\mathbf{2.} \ x \ge 0 \\
y \ge 0 \\
x + y \le 8
\end{array}$$

Tell whether the lines are perpendicular, parallel, or neither. (2.2)

54. Line 1: through
$$(-6, -3)$$
 and $(0, 1)$ Line 2: through $(0, -5)$ and $(4, -2)$

Write an equation of the line with the given characteristics. (2.4)

55. slope:
$$-3$$
, y-intercept: 7

57.
$$x$$
-intercept: -2 , y -intercept: 1

Evaluate the function for the given value(s). (2.1, 2.7, 2.8, 3.5)

58.
$$f(x) = 5x - 17$$
, $f(-3)$

59.
$$f(x) = x^2 - 2x + 11$$
, $f(2)$

58.
$$f(x) = 5x - 17$$
, $f(-3)$ **59.** $f(x) = x^2 - 2x + 11$, $f(2)$ **60.** $f(x) = \begin{cases} x - 4, & \text{if } x \le 0 \\ x + 2, & \text{if } x > 0, f(-2) \end{cases}$

61.
$$f(x) = -|12 - 8x|, f(1)$$

62.
$$f(x, y) = 8x - 5y, f(3, -2)$$

61.
$$f(x) = -|12 - 8x|$$
, $f(1)$ **62.** $f(x, y) = 8x - 5y$, $f(3, -2)$ **63.** $f(x, y) = 2(-x + y)$, $f(-1, 0)$

Solve the system using any algebraic method. (3.2, 3.6)

65.
$$x - 3y = 7$$
 $2x + y = 7$

66.
$$x + y - z = 7$$
 $-x + 2y + 2z = 3$ $x - y - z = 1$ **67.** $2x + y + z = 4$ $x - y - 2z = -9$ $2x - y + z = 6$

67.
$$2x + y + z = 4$$

 $x - y - 2z = -9$
 $2x - y + z = 6$

Graph in a three-dimensional coordinate system. (3.5)

68.
$$(1, -4, 2)$$

70.
$$x + 2y + 3z = 6$$

70.
$$x + 2y + 3z = 6$$
 71. $10x + 4y + 5z = 20$

- 72. SWEATER SALE You pay \$38.50 for a sweater that is marked 30% off the regular price. What is the regular price of the sweater? How much did you save by buying it on sale? (1.5)
- 73. S BODY TEMPERATURE Although the average body temperature of a healthy baby is 98.6°F, the temperature can vary from 97°F to 100°F. Write an inequality to describe the range of healthy temperatures. On a number line, graph the inequality and mark the average body temperature of a healthy baby. (1.6)
- 74. SHIGHWAY TRAVEL If you drive at a constant speed then the distance you travel d varies directly with the time t. Suppose you use cruise control and drive 180 miles in 3 hours. Write an equation to show the relationship between d and t. What is the constant of variation and what does it represent? (2.4)
- 75. SOLID WASTE The table gives the amount of material recovered from solid waste (in millions of tons) in the United States from 1988 to 1996. Make a scatter plot of the data and approximate a best-fitting line. Predict the amount of material recovered in the United States in 2002. (2.5)

Years since 1988, <i>t</i>	0	1	2	3	4	5	6	7	8
Material, <i>m</i>	23.5	29.9	33.6	37.0	40.6	43.8	50.9	55.1	57.3

- ► Source: Statistical Abstract of the United States
- 76. Auto Rental An automobile rental agency charges \$60 per day with unlimited mileage. A second agency charges \$45 per day plus \$.25 per mile after the first 100 miles. For a one-day rental, after how many miles will the first agency be less expensive? (3.1, 3.2)
- 77. STIR-FRY RECIPE A restaurant serves a stir-fry dish containing vegetables and beef. The recipe calls for no more than twice as many pounds of vegetables as beef. The owner buys vegetables at \$1.39 per pound and beef at \$1.79 per pound and will order a total of 150 pounds. To minimize the cost yet satisfy the recipe, how much of each food should the owner order? What will be the total cost? (3.4)