CHAPTER

Chapter Summary

WHAT did you learn?	Why did you learn it?
Evaluate and approximate square roots. (9.1)	Find solutions using a quadratic model for mineral hardness. (p. 509)
Solve a quadratic equation.	
• by finding square roots (9.1)	Estimate the time for an object to fall. (p. 506)
• by sketching its graph (9.4)	Compare shot-put throws. (p. 528)
• by using the quadratic formula. (9.5)	Model vertical motion problems. (p. 535)
Simplify radicals. (9.2)	Compare the speeds of two sailboats. (p. 513)
Sketch the graph of a quadratic function. (9.3)	Estimate the maximum height of a water spray. (p. 522)
Find the number of solutions of a quadratic	Decide whether an outcome is possible in a
equation by using the discriminant. (9.6)	camping situation. (p. 543)
Sketch the graph of a quadratic inequality. (9.7)	Sketch the region between the towers and under the main cable of a suspension bridge. (p. 550)
Choose an algebraic model that best fits a	Recognize the characteristics of different models in
collection of data. (9.8)	real-life settings. (pp. 555 and 556)

How does Chapter 9 fit into the BIGGER PICTURE of algebra?

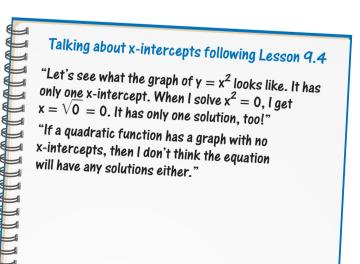
A quadratic equation contains the square of a variable. Try to remember the "algebra-geometry" connection between equations in one and two variables. For instance, the equation $x^2 - 9 = 0$ has two solutions, or roots, which correspond to the two *x*-intercepts of the graph of the function $y = x^2 - 9$. A quadratic function has a U-shaped graph called a *parabola*.

This chapter focuses on quadratic models, which have many applications, such as vertical motion and parabolic path problems. The last lesson helps you decide whether to apply a linear, an exponential, or a quadratic model to fit a collection of real-life data.

STUDY STRATEGY

How did explaining ideas help you to understand a topic?

Talking with a classmate about Lesson 9.4 may have led you to think about ideas that you would understand fully in Lesson 9.6.



Chapter Review

VOCABULARY

• square root, p. 503

CHAPTER

- positive square root, p. 503
- negative square root, p. 503
- radicand, p. 503

9

- perfect square, p. 504
- irrational number, p. 504
- radical expression, p. 504
- quadratic equation in standard form, p. 505
- leading coefficient, p. 505
- simplest form of a radical expression, p. 512
- quadratic function in standard form, p. 518
- parabola, p. 518
- vertex, p. 518
- axis of symmetry, p. 518
- roots, p. 526

- quadratic formula, p. 533
- discriminant, p. 541
- quadratic inequalities, p. 548
- graph of a quadratic inequality, p. 548

1	SOLVING QUADRATIC EQUATIONS BY FINDING SQUARE ROOTS	Examples on pp. 503–506
	EXAMPLE To find the real solutions of a quadratic equation of the form	

 $ax^2 + c = 0$, isolate x^2 and then find the square root of each side.

 $2x^2 - 98 = 0$ Write original equation. $2x^2 = 98$ Add 98 to each side. $x^2 = 49$ Divide each side by 2. $x = \pm \sqrt{49}$ Find square roots. $x = \pm 7$ 49 is a perfect square.

Solve the equation.

1. $x^2 - 144 = 0$	2. $8y^2 = 968$	3. $4t^2 + 19 = 19$
4. $16y^2 - 80 = 0$	5. $\frac{1}{5}a^2 = 5$	6. $\frac{1}{3}x^2 - 7 = -4$

9.2

562

SIMPLIFYING RADICALS

EXAMPLES Use the product property and the quotient property.

a. $\sqrt{28} = \sqrt{4 \cdot 7}$ = $\sqrt{4} \cdot \sqrt{7} = 2\sqrt{7}$ **b.** $\sqrt{\frac{169}{625}} = \frac{\sqrt{169}}{\sqrt{625}} = \frac{13}{25}$

Factor using perfect square factor. Use product property and simplify.

Use quotient property and simplify.

9. $\sqrt{\frac{36}{64}}$

Simplify the expression.

7. √45

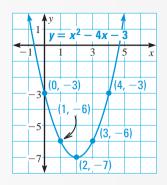
8. $\sqrt{441}$

Examples on pp. 511–513

GRAPHING QUADRATIC FUNCTIONS

EXAMPLE To sketch the graph of $y = x^2 - 4x - 3$, first find the *x*-coordinate of the vertex: $-\frac{b}{2a} = -\frac{-4}{2(1)} = 2$. Make a table of values using *x*-values to the left and right of x = 2. Plot the points and connect them to form a parabola.

x	-1	0	1	2	3	4	5
y	2	-3	-6	-7	-6	-3	2



Examples on

Examples on

pp. 526-528

pp. 518-520

Sketch the graph of the function. Label the vertex.

11. $y = x^2 - x - 5$ **12.** $y = -x^2 - 3x + 2$ **13.** $y = -4x^2 + 6x + 3$

9.4

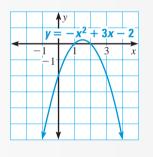
9.3

SOLVING QUADRATIC EQUATIONS BY GRAPHING

EXAMPLE To solve the quadratic equation $-x^2 + 3x = 2$ by graphing, first rewrite the equation in the form $ax^2 + bx + c = 0$. $-x^2 + 3x - 2 = 0$.

Sketch the graph of the related function $y = -x^2 + 3x - 2$.

From the graph, the *x*-intercepts appear to be x = 1 and x = 2. Check these in the original equation.



Solve the equation by graphing. Check the solution algebraically.

14. $x^2 + 2 = 3x$ **15.** $x^2 - 2x = 15$ **16.** $\frac{1}{2}x^2 + 5x = -8$ **17.** $-x^2 - 2x = -24$

9.5 SOLVING QUADRATIC EQUATIONS BY THE QUADRATIC FORMULA

EXAMPLE Solve equations of the form $ax^2 + bx + c = 0$ by substituting the values of *a*, *b*, and *c* into the quadratic formula. Solve $x^2 + 6x - 16 = 0$.

$$x = \frac{-6 \pm \sqrt{6^2 - 4(1)(-16)}}{2(1)} = \frac{-6 \pm \sqrt{36 + 64}}{2} = \frac{-6 \pm \sqrt{100}}{2} = \frac{-6 \pm 10}{2}$$

The equation has two solutions: $x = \frac{-6+10}{2} = 2$ and $x = \frac{-6-10}{2} = -8$.

Use the quadratic formula to solve the equation.

18. $3x^2 - 4x + 1 = 0$ **19.** $-2x^2 + x + 6 = 0$ **20.** $10x^2 - 11x + 3 = 0$

APPLICATIONS OF THE DISCRIMINANT

Examples on pp. 541–543

Examples on

pp. 548-550

4

EQUATION	DISCRIMINANT	NUMBER OF SOLUTIONS
$3x^2 + 6x + 2 = 0$	$6^2 - 4(3)(2) = 12$	2
$2x^2 + 8x + 8 = 0$	$8^2 - 4(2)(8) = 0$	1
$x^2 + 7x + 15 = 0$	$7^2 - 4(1)(15) = -11$	0

Tell if the equation has two solutions, one solution, or no real solution.

21. $3x^2 - 12x + 12 = 0$ **22.** $2x^2 + 10x + 6 = 0$ **23.** $-x^2 + 3x - 5 = 0$

9.7

9.8

GRAPHING QUADRATIC INEQUALITIES

EXAMPLE To sketch the graph of the quadratic inequality $y < x^2 - 9$, first sketch the graph of the parabola $y = x^2 - 9$. Use a dashed parabola for inequalities with > or <, and a solid parabola for inequalities with \ge or \le .

Then test a point that is not on the parabola, say (0, 0). If the test point is a solution, shade its region. If not, shade the other region.

Sketch the graph of the inequality.

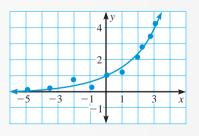
24.
$$x^2 - 3 \ge y$$

COMPARING LINEAR, EXPONENTIAL, AND QUADRATIC MODELS

25. $-x^2 - 2x + 3 \le y$ **26.** $\frac{1}{2}x^2 + 3x - 4 < y$

EXAMPLE To choose the type of model that best fits a set of data, first make a scatter plot of the data. Then decide whether the points lie on a line, an exponential curve, or a parabola.

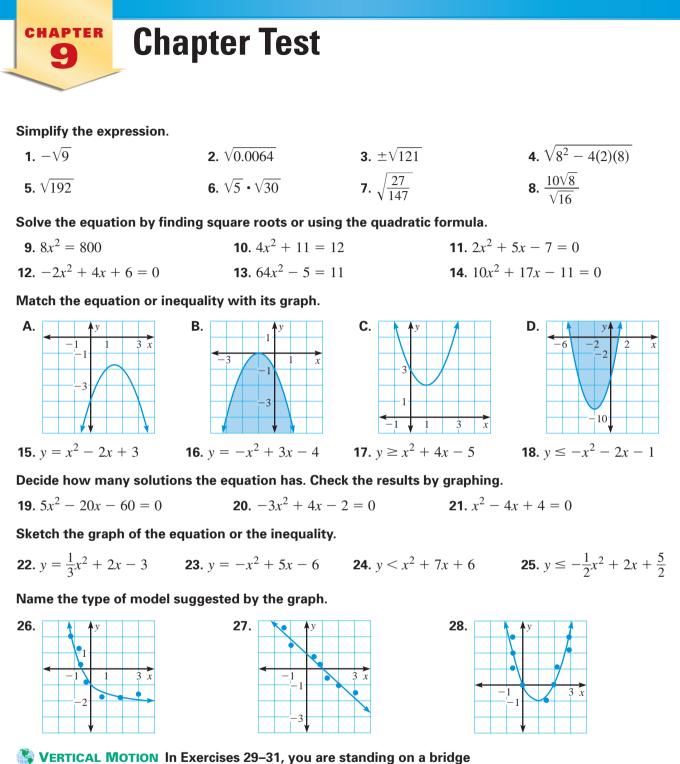
The points in the graph appear to lie on an exponential curve. An exponential model could be used to model the set of data.



Make a scatter plot and name the type of model that best fits the data.

27.
$$(-3, 4), (-2, 1), (-1, 0), (0, 1), (1, 4), (2, 9), (3, 16)$$

28. $(-3, -7), (-2, -4), (-1, -1), (0, 2), (1, 5), (2, 8), (3, 11)$
29. $\left(-3, \frac{1}{8}\right), \left(-2, \frac{1}{4}\right), \left(-1, \frac{1}{2}\right), (0, 1), (1, 2), (2, 4), (3, 8)$



over a creek, holding a stone 20 feet above the water.

29. You release the stone. How long will it take the stone to hit the water?

- **30.** You take another stone and toss it straight up with an initial velocity of 30 feet per second. How long will it take the stone to hit the water?
- **31.** If you throw a stone straight up into the air with an initial velocity of 50 feet per second, could the stone reach a height of 60 feet above the water?