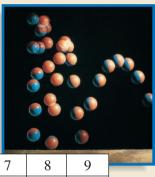
Graphing Calculator Activity for use with Lesson 8.6


ACTIVITY 8.6 Using Technology

Fitting Exponential Models

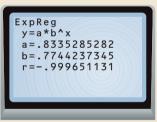
In Chapter 5, you learned that you can use a graphing calculator to find a bestfitting line. A graphing calculator can also be used to find a best-fitting exponential growth or decay model.

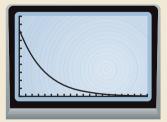
EXAMPLE

A rubber ball is dropped from a height of 0.82 meter. Using a CBL unit, the height of the ball on each successive bounce was recorded. The *x*-values represent the bounce and the *y*-values represent the height. Use a graphing calculator to find an exponential model for these data.

x	0	1	2	3	4	5	6	7	8	9	200
y	0.82	0.64	0.50	0.39	0.30	0.24	0.18	0.14	0.11	0.08	

SOLUTION


 Enter the ordered pairs into the graphing calculator. Select L₁ as the *x* list and L₂ as the *y* list.


3 Set the viewing rectangle so that $0 \le x \le 20$ and $0 \le y \le 1$.

WINDOW	
Xmin=0	
X max = 20	
Xscl=1	
Ymin=O	
Y max = 1	
Yscl=.1	

2 Use exponential regression to find an exponential model. The equation $y = 0.8335(0.7744)^x$ is the best-fitting exponential model.

4 Graph the equation $y = 0.8335(0.7744)^{x}$.

EXERCISES

Use a graphing calculator to find the best-fitting exponential growth model for the points.

1. (0, 1), (1, 1.4), (2, 3), (3, 5), (4, 8), (5, 12), (6, 20), (7, 30), (8, 50), (9, 80) **2.** (0, 0.5), (2, 0.8), (3, 1), (4, 1.4), (5, 1.8), (6, 2.7), (7, 3.6), (8, 4.9), (9, 7)

