► ACTIVITY 8.1

Developing Concepts

SETUP

Work in a small group.

MATERIALS

- paper
- pencil

Investigating Powers

• **QUESTION** How can you use addition to multiply exponential expressions? How can you use multiplication to raise an exponential expression to a power?

EXPLORING THE CONCEPT: PRODUCT OF POWERS

1 Copy and complete the table. To simplify an expression, expand the product. Then count the factors.

Product of powers	Expanded product	Number of factors	Product as a power
$7^3 \cdot 7^2$	$(7 \cdot 7 \cdot 7) \cdot (7 \cdot 7)$	5	7 ⁵
$2^4 \cdot 2^4$	$(2 \cdot 2 \cdot 2 \cdot 2) \cdot (2 \cdot 2 \cdot 2 \cdot 2)$	8	?
$x^4 \cdot x^5$	$(x \cdot x \cdot x \cdot x) \cdot (x \cdot x \cdot x \cdot x \cdot x)$?	?

2 Add a column to your table that shows the sum of the exponents that are in the first column. What pattern do you notice?

EXPLORING THE CONCEPT: POWER OF A POWER

3 Copy and complete the table. To simplify an expression, expand the product. Then count the factors.

Power of a power	Expanded product	Expanded product	Number of factors	Product as a power
$(5^2)^3$	$(5^2) \cdot (5^2) \cdot (5^2)$	$(5 \cdot 5) \cdot (5 \cdot 5) \cdot (5 \cdot 5)$	6	5 ⁶
$[(-3)^2]^2$	$\left[(-3)^2\right] \cdot \left[(-3)^2\right]$?	?	?
$(b^2)^4$?	?	?	?

4 Add a column to your table that shows the product of the exponents that are in the first column. What pattern do you notice?

DRAWING CONCLUSIONS

Expand the product. Then write your answer as a power.

1. $6^3 \cdot 6^2$	2. $(-2) \cdot (-2)^4$	3. $p^4 \cdot p^6$	4. $x^{12} \cdot x^7$
5. (4 ²) ⁶	6. $[(-5)^2]^4$	7. $(d^5)^5$	8. $[(-n)^3]^8$

9. What operation do you use to simplify a product of powers? Give examples.

- **10**. What operation do you use to simplify a power of a power? Give examples.
- **11. CRITICAL THINKING** Does $x^3 \cdot y^5 = xy^8$? Explain your answer.