\qquad
\qquad

Reteaching with Practice
 For use with pages 426-431

GOAL Identify linear systems as having one solution, no solution, or infinitely many solutions and model real-life problems using a linear system

EXAMPLE 1 A Linear System with No Solution

Show that the linear system has no solution.

$$
\begin{array}{ll}
3 x-y=1 & \text { Equation 1 } \\
3 x-y=-2 & \text { Equation 2 }
\end{array}
$$

Solution

Method 1: GRAPHING Rewrite each equation in slope-intercept form. Then graph the linear system.

$$
\begin{array}{ll}
y=3 x-1 & \text { Revised Equation 1 } \\
y=3 x+2 & \text { Revised Equation 2 }
\end{array}
$$

Because the lines have the same slope but different y-intercepts, they are parallel. Parallel lines never intersect, so the system has no solution.

Method 2: SUBSTITUTION Because Equation 2 can be revised to $y=3 x+2$, you can substitute $3 x+2$ for y in Equation 1 .

$$
\begin{array}{rlrl}
3 x-y & =1 & & \text { Write Equation } 1 \\
3 x-(3 x+2) & =1 & & \text { Substitute } 3 x+2 \text { for } y . \\
-2=1 & & \text { Simplify. False statement. }
\end{array}
$$

The variables are eliminated and you have a statement that is not true regardless of the values of x and y. The system has no solution.

Exercises for Example 1

Choose a method to solve the linear system and tell how many solutions the system has.

1. $2 x-y=1$
$6 x-3 y=12$
2. $x+y=5$
$3 x+3 y=7$
3. $2 x+6 y=6$
$x+3 y=-3$

example 2 A Linear System with Many Solutions

Use linear combinations to show that the linear system has infinitely many solutions.

$$
\begin{array}{ll}
3 x+y=4 & \text { Equation 1 } \\
6 x+2 y=8 & \text { Equation 2 }
\end{array}
$$

Reteaching with Practice

For use with pages 426-430

EXAMPLE 2 SOLUTION

You can multiply Equation 1 by -2 .

$$
\begin{aligned}
-6 x-2 y & =-8 & & \text { Multiply Equation } 1 \text { by }-2 . \\
\underline{6 x+2 y} & =8 & & \text { Write Equation } 2 . \\
0 & =0 & & \text { Add the equations. }
\end{aligned}
$$

The variables are eliminated and you have a statement that is true regardless of the values of x and y. The system has infinitely many solutions.

Exercises for Example 2

Choose a method to solve the linear system and tell how many solutions the system has.
4. $2 x+3 y=6$
$6 x+9 y=18$
5. $4 x+6 y=12$
$6 x+9 y=18$
6. $4 x-2 y=6$
$2 x-y=3$

EXAMPLE 3 Modeling a Real-Life Problem

An artist is buying art supplies. She buys 4 sketchpads and 2 palettes. She pays $\$ 16$ for the supplies. The following week, at the same prices, she buys 2 sketchpads and one palette and pays $\$ 8$. Can you find the price of one sketchpad? Explain.

Solution

Let x represent the price of a sketchpad and let y represent the price of a palette. Determine the number of solutions of the linear system:

$$
\begin{aligned}
4 x+2 y & =16 & & \text { Equation 1 } \\
2 x+y & =8 & & \text { Equation 2 }
\end{aligned}
$$

Use the graphing method to identify the number of solutions for the linear system. Rewrite each equation in slope-intercept form and graph the linear system.

$$
\begin{array}{ll}
y=-2 x+8 & \text { Revised Equation 1 } \\
y=-2 x+8 & \text { Revised Equation 2 }
\end{array}
$$

The equations represent the same line. Any point on the line is a solution. You cannot find the price of one sketchpad.

Exercise for Example 3

7. Rework Example 3, if the cost of the second purchase was $\$ 5$ for one sketchpad and one palette.
