NAME _

Reteaching with Practice

For use with pages 426-431

LESSON

Identify linear systems as having one solution, no solution, or infinitely many solutions and model real-life problems using a linear system

```
EXAMPLE 1 A Linear System with No Solution
```

Show that the linear system has no solution.

3x - y = 1 Equation 1 3x - y = -2 Equation 2

SOLUTION

Method 1: GRAPHING Rewrite each equation in slope-intercept form. Then graph the linear system. y = 3x - 1 Revised Equation 1 y = 3x + 2 Revised Equation 2

Because the lines have the same slope but different *y*-intercepts, they are parallel. Parallel lines never intersect, so the system has no solution.

Method 2: SUBSTITUTION Because Equation 2 can be revised to y = 3x + 2, you can substitute 3x + 2 for y in Equation 1.

3x - y = 1	Write Equation 1.
3x - (3x + 2) = 1	Substitute $3x + 2$ for y.
-2 = 1	Simplify. False statement.

The variables are eliminated and you have a statement that is not true regardless of the values of x and y. The system has no solution.

Exercises for Example 1

Choose a method to solve the linear system and tell how many solutions the system has.

1. $2x - y = 1$	2. $x + y = 5$	3. $2x + 6y = 6$
6x - 3y = 12	3x + 3y = 7	x + 3y = -3

EXAMPLE 2 A Linear System with Many Solutions

Use linear combinations to show that the linear system has infinitely many solutions.

3x + y = 4 Equation 1 6x + 2y = 8 Equation 2 Name NAME

Reteaching with Practice

For use with pages 426-430

SOLUTION **EXAMPLE 2**

You can multiply Equation 1 by -2.

-6x - 2y = -8	Multiply Equation 1 by -2 .
$\underline{6x + 2y = 8}$	Write Equation 2.
0 = 0	Add the equations.

The variables are eliminated and you have a statement that is true regardless of the values of x and y. The system has infinitely many solutions.

Exe	rcises	for	Examp	le 2

Choose a method to solve the linear system and tell how many solutions the system has.

4. $2x + 3y = 6$	5. $4x + 6y = 12$	6. $4x - 2y = 6$
6x + 9y = 18	6x + 9y = 18	2x - y = 3

EXAMPLE 3 Modeling a Real-Life Problem

An artist is buying art supplies. She buys 4 sketchpads and 2 palettes. She pays \$16 for the supplies. The following week, at the same prices, she buys 2 sketchpads and one palette and pays \$8. Can you find the price of one sketchpad? Explain.

SOLUTION

EXAMPLE 3

74

Let x represent the price of a sketchpad and let y represent the price of a palette. Determine the number of solutions of the linear system:

4x + 2y = 16	Equation 1
2x + y = 8	Equation 2

Use the graphing method to identify the number of solutions for the linear system. Rewrite each equation in slope-intercept form and graph the linear system.

y = -2x + 8	Revised Equation 1
y = -2x + 8	Revised Equation 2

The equations represent the same line. Any point on the line is a solution. You cannot find the price of one sketchpad.

Exercise for Example 3

7. Rework Example 3, if the cost of the second purchase was \$5 for one sketchpad and one palette.

LESSON

DATE

DATE