\qquad

Practice B

For use with pages 426-431

Match the graph with its linear system. Does the system have exactly one solution, no solution, or infinitely many solutions?
A. $-2 x+y=6$
$-4 x+2 y=-6$
B. $x-4 y=7$
$5 x+y=-7$
D. $5 x+4 y=2$
$-5 x-4 y=-1$
1.

E. $-2 x+3 y=-6$
$2 x+3 y=0$
2.

C. $-9 x+3 y=-6$
$-3 x+y=-2$
F. $x-y=2$

$$
7 x-7 y=14
$$

3.

4.

5.

6.

Use the substitution method or linear combinations to solve the linear system and tell how many solutions the system has.
7. $-8 x+8 y=-6$
$3 x-3 y=8$
8. $-6 x-6 y=-12$
$-2 x-2 y=-4$
9. $-4 x-2 y=2$
$4 x-2 y=18$
10. $6 x-4 y=-6$
$3 x+2 y=1$
11. $3 x-2 y=-5$
$-9 x+6 y=15$
12. $x+3 y=-3$
$\frac{1}{3} x+y=1$

Use the graphing method to solve the linear system and tell how many solutions the system has.

13. $2 x+y=7$
$4 x+2 y=-10$
14. $-2 x+3 y=18$
$-2 x+3 y=-18$
15. $x-7 y=10$
$-6 x+4 y=-22$
16. Revenue and Cost The matrix gives the revenue and cost of running a business from 1997 to 2000. Construct two scatter plots, one for revenue and one for cost. Then find the line that best fits each scatter plot.
17. Profit Profit can be defined as revenue minus cost. What does the graph from Exercise 19 tell you about the business' profit from 1997 to 2000 ?
18. $\begin{gathered}-x+4 y=-3 \\ 3 x-12 y=3 \\ \text { 18. } \frac{1}{2} x+y=-2 \\ \frac{3}{2} x+3 y=6\end{gathered}$

Amount (in \$1000)
Revenue Cost
1997
1998
1999
2000 $\left[\begin{array}{rr}50 & 25 \\ 100 & 75 \\ 150 & 125 \\ 200 & 175\end{array}\right]$

