Practice B

For use with pages 426-431

Match the graph with its linear system. Does the system have exactly one solution, no solution, or infinitely many solutions?

A.
$$-2x + y = 6$$

 $-4x + 2y = -6$

D.
$$5x + 4y = 2$$

 $-5x - 4y = -1$

B.
$$x - 4y = 7$$

 $5x + y = -7$

E.
$$-2x + 3y = -6$$

 $2x + 3y = 0$

C.
$$-9x + 3y = -6$$

 $-3x + y = -2$

F.
$$x - y = 2$$

 $7x - 7y = 14$

Use the substitution method or linear combinations to solve the linear system and tell how many solutions the system has.

7.
$$-8x + 8y = -6$$

 $3x - 3y = 8$

10.
$$6x - 4y = -6$$
 $3x + 2y = 1$

8.
$$-6x - 6y = -12$$

$$-2x - 2y = -4$$

11.
$$3x - 2y = -5$$

 $-9x + 6y = 15$

9.
$$-4x - 2y = 2$$

$$4x - 2y = 18$$

12.
$$x + 3y = -3$$
 $\frac{1}{3}x + y = 1$

Use the graphing method to solve the linear system and tell how many solutions the system has.

13.
$$2x + y = 7$$

 $4x + 2y = -10$

16.
$$6x - 5y = 3$$

 $-2x + \frac{5}{3}y = 1$

14.
$$-2x + 3y = 18$$

$$-2x + 3y = -18$$

17.
$$x - 7y = 10$$

 $-6x + 4y = -22$

15.
$$-x + 4y = -3$$

$$3x - 12y = 3$$

18.
$$\frac{1}{2}x + y = -2$$
 $\frac{3}{2}x + 3y = 6$

- **19.** *Revenue and Cost* The matrix gives the revenue and cost of running a business from 1997 to 2000. Construct two scatter plots, one for revenue and one for cost. Then find the line that best fits each scatter plot.
- **20.** *Profit* Profit can be defined as revenue minus cost. What does the graph from Exercise 19 tell you about the business' profit from 1997 to 2000?

Amount (in \$1000) Revenue Cost

1997	5 0	25
1998	100	75
1999	150	125
2000	200	175