Lesson

Graphing Calculator Activity

For use with pages 426-431

GOAL

To discover how to shift the graph of a square root function horizontally and vertically

The standard form of the square root function is $y = a\sqrt{x - h} + k$. In the function $y = \sqrt{x}$, which was presented in Lesson 7.4, you do not see the a, h, or k because a = 1 and both h and k are zero.

Activity

- **1** Enter the equation $y = \sqrt{x}$ into your graphing calculator as Y_1 and plot the graph in a standard viewing window.
- **2** Enter and plot the graph of each equation one at a time as Y_2 . Compare each graph with the graph of $y = \sqrt{x}$ from Step 1.

a.
$$y = \sqrt{x - 5}$$

b.
$$y = \sqrt{x + 7}$$

- 3 Identify h in each equation of Step 2.
- 4 Enter and plot the graph of each equation one at a time as Y_2 . Compare each graph with the graph of $y = \sqrt{x}$ from Step 1.
- **5** Identify k in each equation of Step 4.
- **6** Enter $y = \sqrt{x-2} + 8$ as Y_2 and plot the graph. Compare the graph with the graph of $y = \sqrt{x}$ from Step 1.

Exercises

1. Sketch the graph of each equation below. Use your graphing calculator to check your answer.

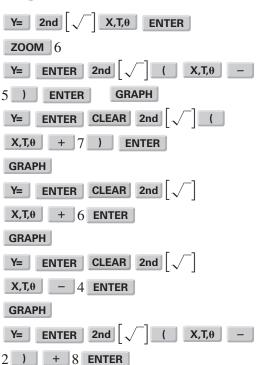
a.
$$y = \sqrt{x-3} + 5$$

b.
$$y = \sqrt{x+1} - 4$$

c.
$$y = \sqrt{x+2} + 6$$

In Exercises 2–5, complete the statement.

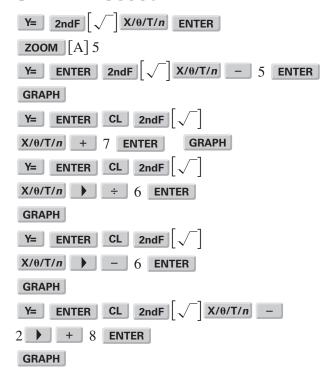
- **2.** If *h* is positive, the graph will shift to the _____ *h* units.
- **3.** If *h* is negative, the graph will shift to the _____ *h* units.
- **4.** If *k* is positive, the graph will shift _____ *k* units.
- **5.** If k is negative, the graph will shift $\underline{} k$ units.


LESSON
75
CONTINUED

Name _____ Name _____ Date ____

Graphing Calculator Activity

For use with pages 426-436



TI-83

Y= 2nd $\left[\sqrt{\frac{X}{\theta}/T/n}\right]$ ENTER
ZOOM 6
Y= ENTER 2nd $\left[\sqrt{}\right]$ X,T, θ ,n - 5
) ENTER GRAPH
Y= ENTER CLEAR 2nd []
X,T,θ,n + 7) ENTER
GRAPH
Y= ENTER CLEAR 2nd $\left[\sqrt{}\right]$ X,T, θ ,n - 2
) + 8 ENTER
GRAPH

SHARP EL-9600c

GRAPH

Casio CFX-9850Ga PLUS

From the main menu, choose GRAPH. SHIFT $\sqrt{}$ X, θ, T EXE SHIFT F3 F3 EXIT F6 EXIT SHIFT $\sqrt{}$ (X, θ, T – 5) EXE F6 EXIT \triangle SHIFT $\sqrt{}$ (X, θ, T – 7) EXE F6 EXIT SHIFT X,θ,T + 6 EXE F6 EXIT SHIFT $\begin{bmatrix} X, \theta, T \end{bmatrix} - 4$ EXE F6 EXIT SHIFT \ (X,θ,T -2) + 8 EXE F6

Name Date Date

Graphing Calculator Activity Keystrokes

For use with pages 430-436

Excel Keystrokes for Exercise 34

Open computer to excel program.

Select cell A1.

x TAB
$$y = 2x + 3$$
 TAB $y = 2x - 9$ TAB col. B-col. C ENTER

Enter x-values -3 to 4 in cells A2–A9.

Select cell B2.

$$= 2*A2 + 3$$
 ENTER

Select cell B2. From the **Edit** menu, choose **Copy**.

Select cells B3-B9. from the Edit menu choose Paste.

Select cell C2.

$$= 2*A2 - 9$$
 ENTER

Select cell C2. From the Edit menu, choose Copy.

Select cells C3-C9. from the **Edit** menu, choose **Paste**.

Select cell D2.

$$= B2 - C2$$
 ENTER

Select cell D2. From the Edit menu, choose Copy.

Select cells D3-D9. From the Edit menu, choose Paste.