Reteaching with Practice

For use with pages 418-424

GOAL Choose the best method to solve a linear system and use a system to model real-life problems

EXAMPLE 1

Choosing a Solution Method

Your cousin borrowed \$6000, some on a home-equity loan at an interest rate of 9.5% and the rest on a consumer loan at an interest rate of 11%. Her total interest paid was \$645. How much did she borrow at each rate?

SOLUTION

Verbal Model	$\begin{bmatrix} Home-equity \\ loan amount \end{bmatrix} + \begin{bmatrix} Consumer \\ loan amount \end{bmatrix} = \begin{bmatrix} Total \\ loan \end{bmatrix}$			
	Home-equity loan rate · Home-equity loan amount + Consumer loan rate · Consumer loan amount =			
	Total interest paid			
Labels	Home-equity loan amount $= x$ (dollars)			
	Consumer loan amount = y (dollars)			
	Total loan = 6000 (dollars)			
	Home-equity loan rate $= 0.095$ (percent written in decimal form			
	Consumer loan rate = 0.11 (percent written in decimal form)			
	Total interest paid = 645 (dollars)			
Algebraic Model	x + y = 6000 Equation 1 (loan) 0.095x + 0.11y = 645 Equation 2 (interest)			

Because the coefficients of x and y are 1 in Equation 1, use the substitution method. You can solve Equation 1 for x and substitute the result into Equation 2. You will obtain 5000 for y. Substitute 5000 into Equation 1 and solve for x. You will obtain 1000 for x.

The solution is \$1000 borrowed at 9.5% and \$5000 borrowed at 11%.

Exercise for Example 1

1. Choose a method to solve the linear system. Explain your choice.

a. $2x - y = 3$	b. $4x + 4y = 16$	c. $x - 3y = 3$
x + 3y = 5	-2x + 5y = 9	5x + 2y = 14

57

Date

Reteaching with Practice

For use with pages 418–424

EXAMPLE 2 Solving a Cost Problem

Name

For a community bake sale, you purchased 12 pounds of sugar and 15 pounds of flour. Your total cost was \$9.30. The next day, at the same prices, you purchased 4 pounds of sugar and 10 pounds of flour. Your total cost the second day was \$4.60. Find the cost per pound of the sugar and the flour purchases.

SOLUTION

Verbal Model	Amount of sugar Day 1 · Cost of sugar +	$\begin{array}{c c} Amount of \\ flour Day 1 \end{array} \cdot \begin{bmatrix} Cost of \\ flour \end{bmatrix} =$	Total cost Day 1
	Amount of sugar Day 2 · Cost of sugar +	$\begin{array}{c c} Amount of \\ flour Day 2 \end{array} \cdot \begin{bmatrix} Cost of \\ flour \end{bmatrix} =$	Total cost Day 2
Labols	$\frac{1}{2}$	(pounds)	
Labels	Amount of sugar Day $1 - 12$	(pounds)	
	Amount of flour Day $1 = 15$	(pounds)	
	Amount of sugar Day $2 = 4$	(pounds)	
	Amount of flour Day $2 = 10$	(pounds)	
	Cost of sugar $= x$	(dollars per pound)	
	Cost of flour $= y$	(dollars per pound)	
	Total cost Day $1 = 9.30$	(dollars)	
	Total cost Day $2 = 4.60$	(dollars)	
Algebraic Model	12x + 15y = 9.30 Equat 4x + 10y = 4.60 Equat	ion 1 (Purchases–Day 1)	
mout	$\pi \pi + 10y = 7.00$ Equal	2 (1 urcmascs - Day 2)	

Use linear combinations to solve this linear system because none of the variables has a coefficient of 1 or -1. You can get the coefficients of *x* to be opposites by multiplying Equation 2 by -3. You will obtain 0.30 for *y*. Substitute 0.30 for *y* into Equation 1 and solve for *x*. You will obtain 0.40 for *x*.

The solution of the linear system is (0.40, 0.30). You conclude that sugar costs \$.40 per pound and flour costs \$.30 per pound.

Exercise for Example 2

2. Rework Example 2 if the cost of the first purchase was \$7.95 and the cost of the second purchase was \$3.90.

58

Date