\qquad
\qquad

Reteaching with Practice
 For use with pages 411-417

GOAL Use linear combinations to solve a system of linear equations and model a real-life problem using a system of linear equations

Mocabulary

A linear combination of two equations is an equation obtained by adding one of the equations (or a multiple of one of the equations) to the other equation.

example 1 Using Multiplication First

Solve the linear system. $\quad 4 x-3 y=11 \quad$ Equation 1

$$
3 x+2 y=-13 \quad \text { Equation } 2
$$

Solution

The equations are arranged with like terms in columns. You can get the coefficients of y to be opposites by multiplying the first equation by 2 and the second equation by 3 .

$$
\begin{aligned}
& 4 x-3 y=11 \\
& \text { Multiply by 2. } \quad 8 x-6 y=22 \\
& 3 x+2 y=-13 \\
& \text { Multiply by 3. } \frac{9 x+6 y=-39}{17 x} \\
& 17 x=-17 \quad \text { Add the equations. } \\
& x=-1 \quad \text { Solve for } x .
\end{aligned}
$$

Substitute -1 for x in the second equation and solve for y.

$$
\begin{aligned}
3 x+2 y & =-13 & & \text { Write Equation } 2 . \\
3(-1)+2 y & =-13 & & \text { Substitute }-1 \text { for } x . \\
-3+2 y & =-13 & & \text { Simplify. } \\
y & =-5 & & \text { Solve for } y .
\end{aligned}
$$

The solution is $(-1,-5)$.

Exercises for Example 1

Use linear combinations to solve the system of linear equations.

1. $x+2 y=5$
$3 x-2 y=7$
2. $x+y=1$
$2 x-3 y=12$
3. $x-y=-4$
$x+2 y=5$
\qquad

Reteaching with Practice

For use with pages 411-417

EXAMPLE 2 Writing and Using a Linear System

A pharmacy mailed 300 advertisements, smaller ads requiring $\$.33$ postage and larger ads requiring $\$.55$ postage. If the total cost of postage was $\$ 121$, find the number of advertisements mailed at each rate.

Solution

Labels	Number of smaller ads $=x$	(ads)
	Number of larger ads $=y$	(ads)
	Total number of ads $=300$	(ads)
	Postage for smaller ads $=0.33$	(dollars per ad)
	Postage for larger ads $=0.55$	(dollars per ad)
	Total cost of postage $=121$	(dollars)

Algebraic	$x+y$	$=300$	
Model			Equation 1 (ads)
	$0.33 x+0.55 y$	$=121$	
Equation 2 (dollars)			

Use linear combinations to solve for y.

$$
\begin{aligned}
-0.33 x-0.33 y & =-99 & & \text { Multiply Equation } 1 \text { by }-0.33 . \\
0.33 x+0.55 y & =121 & & \text { Write Equation } 2 . \\
0.22 y & =22 & & \text { Add the equations. } \\
y & =100 & & \text { Solve for } y .
\end{aligned}
$$

Substitute 100 for y in Equation 1 and solve for x.

$$
\begin{aligned}
x+y & =300 & & \text { Write Equation } 1 . \\
x+100 & =300 & & \text { Substitute } 100 \text { for } y . \\
x & =200 & & \text { Solve for } x .
\end{aligned}
$$

The solution is $(200,100)$. The pharmacy mailed 200 smaller ads and 100 larger ads.

Exercises for Example 2

4. Rework Example 2 if the total cost of postage was $\$ 154$.
5. Rework Example 2 if the pharmacy mailed 320 advertisements.
