Reteaching with Practice

For use with pages 411–417

Name

GOAL Use linear combinations to solve a system of linear equations and model a real-life problem using a system of linear equations

VOCABULARY

A **linear combination** of two equations is an equation obtained by adding one of the equations (or a multiple of one of the equations) to the other equation.

EXAMPLE 1 Using Multiplication First

Solve the linear system.	4x - 3y = 11	Equation 1
	3x + 2y = -13	Equation 2

SOLUTION

The equations are arranged with like terms in columns. You can get the coefficients of y to be opposites by multiplying the first equation by 2 and the second equation by 3.

4x - 3y = 11	Multiply by 2.	8x - 6y = 22	
3x + 2y = -13	Multiply by 3.	9x + 6y = -39	
		17x = -17	Add the equations.
		x = -1	Solve for <i>x</i> .

Substitute -1 for x in the second equation and solve for y.

3x + 2y = -13 Write Equation 2. 3(-1) + 2y = -13 Substitute -1 for x. -3 + 2y = -13 Simplify. y = -5 Solve for y.

The solution is (-1, -5).

Exercises for Example 1

Use linear combinations to solve the system of linear equations.

1. $x + 2y = 5$	2. $x + y = 1$	3. $x - y = -4$
3x - 2y = 7	2x - 3y = 12	x + 2y = 5

LESSON

CONTINUED

Reteaching with Practice

For use with pages 411-417

EXAMPLE 2 Writing and Using a Linear System

A pharmacy mailed 300 advertisements, smaller ads requiring \$.33 postage and larger ads requiring \$.55 postage. If the total cost of postage was \$121, find the number of advertisements mailed at each rate.

SOLUTION

Verbal Model	Number of smaller ads+Number of larger ads	f = Total number of ads	
	Postage for smaller ads . Number of smaller ads	$+$ Postage for larger ads \cdot Number of larger ads $=$	
	Total cost of postage		
Labels	Number of smaller ads $= x$	(ads)	
	Number of larger ads $= y$	(ads)	
	Total number of $ads = 300$	(ads)	
	Postage for smaller ads $= 0.3$	33 (dollars per ad)	
	Postage for larger ads $= 0.55$	(dollars per ad)	
	Total cost of postage = 121	(dollars)	
Algebraic Model	x + y = 300 0.33x + 0.55y = 121	Equation 1 (ads) Equation 2 (dollars)	
Use linear combinations to solve for y.			
	-0.33x - 0.33y = -99	Multiply Equation 1 by -0.33 .	
	0.33x + 0.55y = 121	Write Equation 2.	
	0.22y = 22	Add the equations.	
	0.22y = 22 $y = 100$	Add the equations. Solve for <i>y</i> .	
Substitute 1	0.22y = 22 y = 100 00 for y in Equation 1 and solv	Add the equations. Solve for <i>y</i> . ve for <i>x</i> .	
Substitute 1	0.22y = 22 y = 100 00 for y in Equation 1 and solv x + y = 300	Add the equations. Solve for <i>y</i> . ve for <i>x</i> . Write Equation 1.	

The solution is (200, 100). The pharmacy mailed 200 smaller ads and 100 larger ads.

Solve for *x*.

Exercises for Example 2

4. Rework Example 2 if the total cost of postage was \$154.

x = 200

5. Rework Example 2 if the pharmacy mailed 320 advertisements.