Practice B

For use with pages 411–417

Use linear combinations to solve the system of linear equations.

1.
$$x + y = 11$$
 $x - y = 7$

4.
$$2x - 4y = 14$$

 $-2x + 3y = -11$

7.
$$x + 2y = -3$$

 $x - 4y = 15$

10.
$$4x - 3y = -3$$

 $4x + 5y = 5$

13.
$$4x = -11 + y$$

 $y = -6x - 9$

16.
$$4x = 5y - 14$$

 $3y - 8x = -14$

2.
$$x - 2y = 8$$
 $-x + 3y = -15$

5.
$$\frac{1}{2}x - y = -3$$

 $-5x + y = 12$

8.
$$-x - 5y = 30$$

 $2x - 7y = 25$

11.
$$4x + 5y = -2$$

 $5x - 4y = -23$

14.
$$x = 2y - 3$$

 $2y = 3x + 13$

17.
$$5x = 4y - 30$$

 $2x + 3y = -12$

3.
$$3x + y = -8$$

 $-3x + 4y = -2$

6.
$$7.5x - 1.2y = -2.7$$

 $-1.5x + 1.2y = -3.3$

9.
$$-x + 8y = 16$$
 $3x + 4y = 36$

12.
$$9x - 4y = -18$$

 $-3x + 8y = 6$

15.
$$4y = 15 - 3x$$

 $2y = 3x + 21$

18.
$$\frac{2}{3}y = 10 + 4x$$

 $5x = \frac{1}{3}y - 8$

Electricians In Exercises 19-21, use the following information.

The yellow pages identify two different local electrical businesses. Business A charges \$50 for a service call, plus an additional \$36 per hour for labor. Business B charges \$35 for a service call, plus an additional \$39 per hour for labor.

- **19.** Let *x* represent the number of hours of labor and let *y* represent the total charge. Write a system of equations you could solve to find the length of a service call for which both businesses charge the same amount.
- **20.** Solve the system.
- **21.** Which company would you use? Why?

Travel Agency In Exercises 22 and 23, use the following information.

A travel agency offers two Boston outings. Plan A includes hotel accommodations for three nights and two pairs of baseball tickets worth \$518. Plan B includes hotel accommodations for five nights and four pairs of baseball tickets worth \$907.

- **22.** Let *x* represent the cost of one night's hotel accommodation and let *y* represent the cost of one pair of baseball tickets. Write a system of equations you could solve to find the cost of one night's hotel accommodation and one pair of baseball tickets.
- 23. Solve the system.

Highway Project In Exercises 24 and 25, use the following information.

There are sixteen workers employed on a highway project, some at \$200 per day and some at \$165 per day. The daily payroll is \$2745.

- **24.** Let *x* represent the number of \$200 per day workers and let *y* represent the number of \$165 per day workers. Write a system of equations to find the number of workers employed at each wage.
- **25.** Solve the system.