\qquad

Reteaching with Practice

For use with pages 398-403

GOAL Solve a system of linear equations by graphing and model a real-life problem using a linear system

Vocabulary

Two equations in two variables form a system of linear equations or simply a linear system.
A solution of a system of linear equations in two variables is an ordered pair (x, y) that satisfies each equation in the system.

EXAMPLE 1 Using the Graph-and-Check Method

Solve the linear system graphically. Check the solution algebraically.

$$
\begin{aligned}
-3 x+y & =-7 & & \text { Equation 1 } \\
2 x+2 y & =10 & & \text { Equation 2 }
\end{aligned}
$$

Solution

Write each equation in slope-intercept form.

$$
\begin{array}{ll}
y=3 x-7 & \text { Slope: } 3, y \text {-intercept: }-7 \\
y=-x+5 & \text { Slope: }-1, y \text {-intercept: } 5
\end{array}
$$

Graph each equation. The lines appear to intersect at (3, 2).
To check $(3,2)$ as a solution algebraically, substitute 3 for x and 2 for y in each original equation.

EQUATION 1
$-3 x+y=-7$
EQUATION 2

$$
2 x+2 y=10
$$

$$
-3(3)+2 \stackrel{?}{=}-7
$$

$$
2(3)+2(2) \stackrel{?}{=} 10
$$

$$
-7=-7
$$

Because $(3,2)$ is a solution of each equation in the linear system, it is a solution of the linear system.

Exercises for Example 1

Graph and check to solve each linear system.

1. $y=-x+5$
$y=x+1$
2. $2 x-y=2$
$x=4$
3. $2 x+y=2$
$x-y=4$
\qquad
\qquad

Reteaching with Practice

For use with pages 398-403

EXAMPLE 2 Using a Linear System to Model a Real-Life Problem

Tickets for the theater are $\$ 5$ for the balcony and $\$ 10$ for the orchestra. If 600 tickets were sold and the total receipts were $\$ 4750$, how many tickets were sold for the orchestra?

Solution

Verbal Model	Number of balcony tickets	+Number of orchestra tickets		
	Price of balcony tickets	$=$Total number of tickets		Number of
:---				
balcony tickets	$+$	Price of		
:---				
orchestra tickets	.			

Labels

Price of balcony tickets $=5$	(dollars)
Number of balcony tickets $=x$	(tickets)
Price of orchestra tickets $=10$	(dollars)
Number of orchestra tickets $=y$	(tickets)
Total number of tickets $=600$	(tickets)
Total receipts $=4750$	(dollars)

	Algebraic	$x+y$	$=600$	
Model		Equation 1 (tickets)		
Mx+10y	$=4750$		Equation 2 (receipts)	

Graph the system.
Check the solution:

$$
250+350=600 \text { and } 5(250)+10(350)=1250+3500=4750 .
$$

350 orchestra tickets were sold.

Exercises for Example 2

4. Rework Example 2 if 800 tickets were sold.
5. Rework Example 2 if total receipts were $\$ 3500$.
