ACTIVITY 4.6
Using Technology

Graphing a Linear Equation **Graphing Calculator Activity for use with Lesson 4.6**

In Lesson 4.6 you learned how to graph a linear equation using the slope and the *y*-intercept. With a graphing calculator or a computer, you can graph a linear equation and find solutions.

EXAMPLE 1

Use a graphing calculator to graph 2x - 3y = 33.

SOLUTION

See keystrokes for several models of calculators at www.mcdougallittell.com Rewrite the equation in terms of x and y if necessary. Then solve the equation for y.

3 Think of the screen as a "window" that lets you look at part of a coordinate plane. Press window to set the size of the graph.

WINDOW Xmin=-10 Xmax=10 XscL=1 Ymin=-10 Ymax=10 YscL=1

2	Press	Y=		2	÷	3
		x 🗖	11	E	NTER	

Without parentheses, the calculator may interpret the fraction as $\frac{2}{3r}$.

Y 5 = Y 6 = Y 7 =

4 Press **GRAPH** to graph the equation. A standard viewing window is shown.

To see the point where the graph crosses the x-axis, you can adjust the viewing window. Press window and enter new values. Then pressGRAPH to graph the equation.

WINDOW
Xmin=0
Xmax=20
Xscl=1
Ymin=-15
Ymax=5
Yscl=1

EXAMPLE 2

Estimate the value of y when x = -7 in the equation $y = \frac{2}{3}x - \frac{45}{8}$.

SOLUTION

1 Graph the equation $y = \frac{2}{3}x - \frac{45}{8}$ using a viewing window that will show the graph when $x \approx -7$.

2 Press **TRACE** and a flashing cursor

appears. The *x*-coordinate and *y*-coordinate of the cursor's location are at the bottom of the screen. Press right and left arrows to

move it. Move the trace cursor until the

x-coordinate of the point is at about -7.

STUDENT HELP

Study Tip You can continue to use zoom until the y-coordinate is to the nearest tenth, hundredth, or any other decimal place you need.

3 Use the **ZOOM** feature to get a more accurate estimate. A common way to zoom is to press **ZOOM** and select *Zoom In*. You now have a closer look at the graph at that point. Repeat **Step 2**.

When x = -7, $y \approx -10.3$.

EXERCISES

Use the standard viewing window to graph the equation.

1. y = -2x - 3 **2.** y = 2x + 2 **3.** x + 2y = -1 **4.** x - 3y = 3

Use the indicated viewing window to graph the equation.

5. $y = x + 25$	6. $y = 0.1x$	7. $y = 100x + 2500$
Xmin = -10	Xmin = -10	Xmin = 0
Xmax = 10	Xmax = 10	Xmax = 100
Xscl = 1	Xscl = 1	XscI = 10
Ymin = -5	Ymin = -5	Ymin = 0
Ymax = 35	Ymax = 1	Ymax = 15000
Yscl = 5	Yscl = 0.1	Yscl = 1000

Determine an appropriate viewing window for the graph of the equation.

8. y = x - 330 **9.** y = x - 0.3 **10.** y = 120x **11.** y = 40,000 - 1500x

Use a graph of the equation to estimate the value of *y* for the given value of *x*.

12. y = -9x when x = -1.05**13.** y = 5x + 651 when x = 2.3**14.** $y + \frac{1}{3}x = \frac{1}{5}$ when x = 19**15.** y = -2x - 3 when x = 954