12.3

What you should learn

GOAL Solve a radical equation.

GOAL 2 Use radical equations to solve real-life problems, such as finding the centripetal force a person experiences on a ride in Exs. 66 and 67.

Why you should learn it

To solve real-life problems such as finding the nozzle pressure of antifreeze used to de-ice a plane in Example 5.

Solving Radical Equations

SOLVING A RADICAL EQUATION

In solving an equation involving radicals, the following property can be extremely useful.

SQUARING BOTH SIDES OF AN EQUATION

Suppose *a* and *b* are algebraic expressions.

If a = b, then $a^2 = b^2$.

Example:
$$\sqrt{4} = 2$$
, so $(\sqrt{4})^2 = 2^2$

EXAMPLE 1 Solving a Radical Equation

Solve $\sqrt{x} - 7 = 0$.

SOLUTION Isolate the radical expression on one side of the equation.

$\sqrt{x} - 7 = 0$	Write original equation.	
$\sqrt{x} = 7$	Add 7 to each side.	
$(\sqrt{x})^2 = 7^2$	Square each side.	
x = 49	Simplify.	

The solution is 49. Check the solution in the original equation.

EXAMPLE 2 Solving a Radical Equation

To solve the equation $\sqrt{2x-3} + 3 = 4$, you need to isolate the radical expression first.

$\sqrt{2x-3} + 3 = 4$	Write original equation.
$\sqrt{2x-3} = 1$	Subtract 3 from each side.
$\left(\sqrt{2x-3}\right)^2 = 1^2$	Square each side.
2x - 3 = 1	Simplify.
2x = 4	Add 3 to each side.
x = 2	Divide each side by 2.

The solution is 2. Check the solution in the original equation.

EXTRANEOUS SOLUTIONS Squaring both sides of an equation often introduces an extraneous solution of $a^2 = b^2$ that is *not* a solution of a = b. When you square both sides of an equation, check each solution in the *original* equation.

EXAMPLE 3 Checking for Extraneous Solutions

Solve the equation.

a. $\sqrt{x+2} = x$ **b.** $\sqrt{x} + 13 = 0$

SOLUTION

b.

 $\sqrt{x+2} = x$ a. Write original equation. $(\sqrt{x+2})^2 = x^2$ Square each side. $x + 2 = x^2$ Simplify. $0 = x^2 - x - 2$ Write in standard form. 0 = (x - 2)(x + 1)Factor. x = 2 or x = -1**Zero-product property**

CHECK Substitute 2 and -1 in the original equation.

$\sqrt{2+2} \stackrel{?}{=} 2$	$\sqrt{-1+2} \stackrel{?}{=} -1$
$2 = 2 \checkmark$	$1 \neq -1$

The only solution is 2, because x = -1 is not a solution.

STUDENT HELP

Study Tip

In part (b) of Example 3 you can also use critical thinking to find that there is no solution. Because \sqrt{x} represents a nonnegative number, there is *no* value for \sqrt{x} that is the opposite of 13.

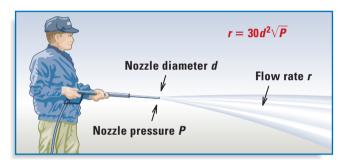
$\sqrt{x} + 13 = 0$	Write original equation.
$\sqrt{x} = -13$	Subtract 13 from each side.
$\left(\sqrt{x}\right)^2 = (-13)^2$	Square each side.
x = 169	Simplify.
$\sqrt{169} + 13 \neq 0$, so the value of the valu	he equation has no solution.

EXAMPLE 4 Using a Geometric Mean

The geometric mean of a and b is \sqrt{ab} . If the geometric mean of a and 6 is 12, what is the value of *a*?

SOLUTION Geometric mean = \sqrt{ab}

$12 = \sqrt{6a}$	Substitute.
$12^2 = (\sqrt{6a})^2$	Square each side.
144 = 6a	Simplify.
24 = a	Solve for <i>a</i> .



EXAMPLE 5 Using a Radical Model

You work for a commercial airline and remove ice from planes. The relationship among the flow rate r (in gallons per minute) of the antifreeze for de-icing, the nozzle diameter d (in inches), and the nozzle pressure P (in pounds per square inch) is shown in the diagram. You want a flow rate of 250 gallons per minute.

- **a**. Find the nozzle pressure for a nozzle whose diameter is 1.25 inches.
- **b**. Find the nozzle pressure for a nozzle whose diameter is 1.75 inches.
- **c.** When you increase the diameter of the nozzle by 40%, do you also change the nozzle pressure by 40%? Explain.

SOLUTION

a.
$$r = 30d^2 \sqrt{P}$$
Write model for water flow. $250 = 30(1.25)^2 \sqrt{P}$ Substitute 1.25 for d and 250 for r. $250 = 46.875 \sqrt{P}$ Simplify. $\frac{250}{46.875} = \sqrt{P}$ Divide each side by 46.875. $\left(\frac{250}{46.875}\right)^2 = P$ Square each side. $28.4 \approx P$ Use a calculator.

The nozzle pressure will be about 28.4 pounds per square inch.

b. $r = 30d^2\sqrt{P}$ Write model for water flow. $250 = 30(1.75)^2\sqrt{P}$ Substitute 1.75 for *d* and 250 for *r*. $\frac{250}{91.875} = \sqrt{P}$ Simplify and divide each side by 91.875. $\left(\frac{250}{91.875}\right)^2 = P$ Square each side. $7.4 \approx P$ Use a calculator.

The nozzle pressure will be about 7.4 pounds per square inch.

c. No, when you increase the nozzle diameter by 40%, the pressure decreases by about 74%.

724

GUIDED PRACTICE

Vocabulary Check
Concept Check

- **1.** Explain what an *extraneous solution* is.
- **2**. One reason for checking a solution in the original equation is to look for an error in one of the steps of the solution. Give another reason.
 - **3.** Is 36 a solution of $\sqrt{x} = -6$? Why or why not?

Skill Check 🗸

Solve the equation. Check for extraneous solutions.

- **4.** $\sqrt{x} 20 = 0$ **5.** $\sqrt{5x + 1} + 8 = 12$ **6.** $\sqrt{4x} 1 = 3$ **7.** $\sqrt{x} + 6 = 0$ **8.** $\sqrt{4x + 5} = x$ **9.** $\sqrt{x + 6} x = 0$ **10.** $x = \sqrt{x + 12}$ **11.** $-5 + \sqrt{x} = 0$ **12.** $x = \sqrt{5x + 24}$
- **13.** Find *a* if the geometric mean of 12 and *a* is 6.
- **14. PLANE DE-ICING** Use Example 5 to answer the question. What will the nozzle pressure be if the nozzle diameter is 2 inches?

PRACTICE AND APPLICATIONS

STUDENT HELP

Extra Practice to help you master skills is on p. 808. **SOLVING RADICAL EQUATIONS** Solve the equation. Check for extraneous solutions.

15. $\sqrt{x} - 9 = 0$	16. $\sqrt{x} - 1 = 0$	17. $\sqrt{x} + 5 = 0$
18. $\sqrt{x} - 10 = 0$	19. $\sqrt{x} - 15 = 0$	20. $\sqrt{x} - 0 = 0$
21. $\sqrt{6x} - 13 = 23$	22. $\sqrt{4x+1} + 5 = 10$	23. $\sqrt{9-x} - 10 = 14$
24. $\sqrt{5x+1} + 2 = 6$	25. $\sqrt{6x-2} - 3 = 7$	26. $4 = 7 - \sqrt{33x - 2}$
27. $10 = 4 + \sqrt{5x + 11}$	28. $-5 - \sqrt{10x - 2} = 5$	29. $\sqrt{-x} - \frac{3}{2} = \frac{3}{2}$
30. $\sqrt{x} + \frac{1}{3} = \frac{13}{3}$	31. $\sqrt{\frac{1}{5}x - 2} - \frac{1}{10} = \frac{7}{10}$	32. $x = \sqrt{\frac{3}{2}x + \frac{5}{2}}$
33. $\sqrt{\frac{1}{4}x - 4} - 3 = 5$	34. $6 - \sqrt{7x - 9} = 3$	35. $\sqrt{\frac{1}{9}x+1} - \frac{2}{3} = \frac{5}{3}$
36. $x = \sqrt{35 + 2x}$	37. $x = \sqrt{-4x - 4}$	38. $x = \sqrt{6x - 9}$
39. $x = \sqrt{30 - x}$	40. $x = \sqrt{11x - 28}$	41. $\sqrt{-10x-4} = 2x$
42. $x = \sqrt{200 - 35x}$	43. $\sqrt{110 - x} = x$	44. $2x = \sqrt{-13x - 10}$
45. $x = \sqrt{4x + 45}$	46. $\frac{1}{5}x = \sqrt{x-6}$	47. $\frac{2}{3}x = \sqrt{24x - 128}$

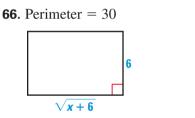
GEOMETRIC MEAN Two numbers and their geometric mean are given. Find the value of *a*.

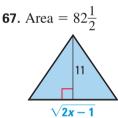
48. 12 and <i>a</i> ; 27	49. 4 and <i>a</i> ; 16	50. 6 and <i>a</i> ; 27
51. 4 and <i>a</i> ; 14	52. 6 and <i>a</i> ; 72	53. 8 and <i>a</i> ; 104

STUDENT HELP

► HOMEWORK HELP Example 1: Exs. 15–21 Example 2: Exs. 22–47 Example 3: Exs. 15–47 Example 4: Exs. 48–53 Example 5: Exs. 69, 70

ERROR ANALYSIS Find and correct the error.


STUDENT HELP


Look Back For help with solving an equation using a graphing calculator, see p. 359. **SOLVING GRAPHICALLY** In Exercises 56–64, use a graphing calculator to graphically solve the radical equation. Check the solution algebraically.

56. $\sqrt{x+4} = 3$	57. $\sqrt{x-5.6} = 2.5$	58. $\sqrt{9.2 - x} = 1.8$
59. $\sqrt{6x-2} - 3 = 7$	60. $4 + \sqrt{x} = 9$	61. $\sqrt{7x - 12} = x$
62. $\sqrt{2x+7} = x+2$	63. $\sqrt{3x-2} = 4 - x$	64. $\sqrt{15 - 4x} = 2x$

65. VISUAL THINKING Use a graphing calculator or a computer to show that the radical equation $\sqrt{11x - 30} = -x$ has no solution. Explain.

GEOMETRY CONNECTION Find the value of *x*.

68. LOGICAL REASONING Write a radical equation that has a solution of 18.

SAMUSEMENT PARK RIDE In Exercises 69 and 70, use the following information.

A ride at an amusement park spins in a circle of radius r (in meters). The centripetal force F experienced by a passenger on the ride is modeled by the equation below, where t is the number of seconds the ride takes to complete one revolution and m is the mass (in kilograms) of the passenger.

$$t = \sqrt{\frac{4\pi^2 mr}{F}}$$

- **69.** A person whose mass is 67.5 kilograms is on a ride that is spinning in a circle at a rate of 10 seconds per revolution. The radius of the circle is 6 meters. How much centripetal force does the person experience?
- **70. CRITICAL THINKING** A person whose mass is 54 kilograms is on the ride. A mass of 54 kilograms is 80% of 67.5 kilograms. Is the centripetal force experienced by the person 80% of the force in Exercise 69? Explain.

726

BLOTTING PAPER In Exercises 71 and 72, use the following information. Blotting paper is a thick, soft paper used for absorbing fluids such as water or ink. The distance d (in centimeters) that tap water is absorbed up a strip of blotting paper at a temperature of 28.4° C is given by the equation

 $d = 0.444\sqrt{t}$ where t is the time (in seconds).

- **71.** Approximately how many minutes would it take for the water to travel a distance of 28 centimeters up the strip of blotting paper?
- **72.** How far up the blotting paper would the water be after $33\frac{1}{3}$ seconds?

GEOMETRIC MEAN In Exercises 73–76, use the proportion $\frac{a}{b} = \frac{b}{d}$, where *a*, *b*, and *d* are positive numbers.

- **73.** In the proportion $\frac{a}{b} = \frac{b}{d}$, *b* is called the geometric mean of *a* and *d*. Use the cross product property to show that $b = \sqrt{ad}$.
- **74.** Two numbers have a geometric mean of 4. One number is 6 more than the other.
 - **a.** Use the proportion in Exercise 73. Rewrite the proportion substituting the given value for the geometric mean.
 - **b.** Let *x* represent one of the numbers. How can you represent "one number is 6 more than the other" in the proportion? Rewrite the proportion using *x*.
 - c. Solve the proportion in part (b) to find the numbers.
- **75.** Two numbers have a geometric mean of 10. One number is 21 less than the other. Find the numbers.
- **76.** Two numbers have a geometric mean of 12. One number is 32 more than the other. Find the numbers.

QUANTITATIVE COMPARISON In Exercises 77–80, choose the statement below that is true about the given quantities.

- A The quantity in column A is greater.
- **B** The quantity in column B is greater.
- **C** The two quantities are equal.
- **(D)** The relationship cannot be determined from the given information.

	Column A	Column B
77.	The geometric mean of 3 and 12	The geometric mean of 1 and 36
78.	The solution of $\sqrt{x} + 4 = 5$	The solution of $\sqrt{x} - 4 = 5$
79.	The solution of $\sqrt{x} - 3 = 5$	The solution of $\sqrt{x-3} = 5$
80.	The geometric mean of -1 and -64	The geometric mean of -2 and -32

Challenge 81. LOGICAL REASONING Using $4\sqrt{x} = 2x + k$, find three different expressions that can be substituted for k so that the equation has two solutions, one solution, and no solution. Describe how you found the equations.

MIXED REVIEW

SOLVING EQUATIONS Solve the equation. (Review 9.1, 9.2 for 12.4)

82. $x^2 = 36$	83. $x^2 = 11$	84. $7x^2 = 700$
85. $25x^2 - 9 = -5$	86. $\frac{1}{7}x^2 - 7 = -7$	87. $-16t^2 + 48 = 0$

.....

FINDING PRODUCTS Multiply. (Review 10.3 for 12.4)

88. $(x + 5)^2$	89. $(2x - 3)^2$	90. $(3x + 5y)(3x - 5y)$
91. (6 <i>y</i> - 4)(6 <i>y</i> + 4)	92. $(x + 7y)^2$	93. $(2a - 9b)^2$

FACTORING TRINOMIALS Factor the trinomial. (Review 10.7 for 12.4)

94. $x^2 + 18x + 81$ **95.** $x^2 - 12x + 36$ **96.** $4x^2 + 28x + 49$

UNDEFINED VALUES For what values of the variable is the rational expression undefined? (Review 11.4)

97.
$$\frac{5}{x-4}$$
 98. $\frac{x+2}{x^2-4}$ **99.** $\frac{x+4}{x^2+x-6}$

100. S COMPARING COSTS A discount grocery store offers two types of memberships with annual membership fees of \$25 and \$100. If you pay the \$25 membership fee, you get regular discounted prices. If you pay the \$100 membership fee, you get an additional 10% discount. How much money would you have to spend on groceries for the two memberships to cost the same? (Review 7.2)

QUIZ 1

728

Self-Test for Lessons 12.1–12.3

Identify the domain and the range of the function. Then sketch the graph of the function. (Lesson 12.1)

1.
$$y = 10\sqrt{x}$$
 2. $y = \sqrt{x-9}$ **3.** $y = \sqrt{2x-1}$ **4.** $y = \frac{\sqrt{x-2}}{3}$

Simplify the expression. (Lesson 12.2)

5. $7\sqrt{10} + 11\sqrt{10}$	6. $2\sqrt{7} - 5\sqrt{28}$	7. $4\sqrt{5} + \sqrt{125} - \sqrt{80}$
8. $\sqrt{3}(3\sqrt{2} + \sqrt{3})$	9. $(\sqrt{7} + 5)^2$	10. $\frac{15}{8+\sqrt{7}}$

Solve the equation. (Lesson 12.3)

11. $\sqrt{x} - 12 = 0$	12. $\sqrt{x} - 8 = 0$	13. $\sqrt{3x+2} + 2 = 3$
14. $\sqrt{3x-2} + 3 = 7$	15. $\sqrt{77 - 4x} = x$	16. $x = \sqrt{2x + 3}$

17. Solution NOZZLE PRESSURE The nozzle pressure *P* (in pounds per square inch) of a hose with diameter *d* (in inches) and water-flow rate *r* (in gallons per minute) is given by the equation $r = 30d^2\sqrt{P}$. Find the nozzle pressure in a hose that has a water-flow rate of 250 gallons per minute and a diameter of 2.5 inches. (Lesson 12.3)