Group Activity for use with Lesson 11.7

• ACTIVITY 11.7 Developing Concepts

GROUP ACTIVITY Work with a partner.

MATERIALS algebra tiles

Modeling Polynomial Division

• **QUESTION** How can you use algebra tiles to model division of polynomials?

EXPLORING THE CONCEPT

You can use algebra tiles to divide $x^2 + 4x + 4$ by x + 3 as follows.

1 Use algebra tiles to model $x^2 + 4x + 4$.

2 Use the tiles to create a length of x + 3.

4 The width of the rectangle is the quotient and the leftover tiles are the remainder. Give the quotient and the remainder when you divide $x^2 + 4x + 4$ by x + 3.

STUDENT HELP Look Back

For help with algebra tiles, see pp. 575 and 603.

 Keeping x + 3 as the length, try to create a rectangle that uses all the tiles from Step 1. Explain why some tiles cannot be used.

DRAWING CONCLUSIONS

Use algebra tiles to decide whether the polynomial can be divided evenly. Make a sketch of your explanation. Compare your result with that of your partner. Then decide together on the quotient and the remainder if any.

- **1.** $(x^2 + 4x + 8) \div (x + 2)$
- **3.** $(x^2 + 6x + 12) \div (x + 4)$
- **5.** Use the model at the right to find the missing values in the division.

2. $(x^2 + 7x + 8) \div (x + 1)$ **4.** $(x^2 + 9x + 25) \div (x + 5)$

6. With polynomial division, as with whole number division, you can check your work by multiplying the divisor by the quotient and then adding the remainder. Use the model in Exercise 5 to explain why this method works. Then use polynomial multiplication to check the division in Exercise 5.